
Silicone Documentation
Release 1.3.0

Robin Lamboll, Zebedee Nicholls, Jarmo Kikstra

Oct 19, 2022

DOCUMENTATION

1 Installation 3

2 Usage 5

3 Development 7
3.1 Contributing . 7
3.2 Getting setup . 8
3.3 Formatting . 9
3.4 Buiding the docs . 9
3.5 Releasing . 10
3.6 Why is there a Makefile in a pure Python repository? . 11

4 Database crunchers API 13
4.1 Closest RMS cruncher API . 13
4.2 Constant ratio cruncher API . 14
4.3 Equal quantile walk cruncher API . 15
4.4 Interpolate specified scenarios and models cruncher API . 16
4.5 Latest Time Ratio API . 16
4.6 Linear interpolation cruncher API . 17
4.7 Quantile rolling windows cruncher API . 18
4.8 Time dependent quantile rolling windows cruncher API . 20
4.9 Time dependent ratio cruncher API . 21

5 Multiple infillers API 23
5.1 Decompose collection with time-dependent ratio API . 23
5.2 Infill all required emissions for openscm API . 24
5.3 Infill composite values API . 25

6 Time projectors API 27
6.1 Extend latest time quantile . 27
6.2 Extend RMS closest . 28
6.3 Linear extender . 28

7 Stats API 31

8 Utils API 35

9 Changelog 39
9.1 [v1.3.0] - 14 Oct 2022 . 39
9.2 [v1.2.0] - 28 Sept 2021 . 39
9.3 [v1.1.0] - 12 July 2021 . 40

i

9.4 [v1.0.3] . 40
9.5 [v1.0.2] - 4 Jan 2021 . 40
9.6 [v1.0.1] - 27 Oct 2020 . 41
9.7 [v1.0.0] - 9 Sept 2020 . 41

10 Index 45

Python Module Index 47

Index 49

ii

Silicone Documentation, Release 1.3.0

Silicone is a Python package which can be used to infer emissions from other emissions data. It is intended to ‘infill’
integrated assessment model (IAM) data so that their scenarios quantify more climate-relevant emissions than are
natively reported by the IAMs themselves. It does this by comparing the incomplete emissions set to complete data
from other sources. It uses the relationships within the complete data to make informed infilling estimates of otherwise
missing emissions timeseries. For example, it can add emissions of aerosol precurors based on carbon dioxide emissions
and infill nitrous oxide emissions based on methane, or split HFC emissions pathways into emissions of different specific
HFC gases.

Silicone is free software under a BSD 3-Clause License, see LICENSE.

DOCUMENTATION 1

https://github.com/GranthamImperial/silicone/blob/master/LICENSE

Silicone Documentation, Release 1.3.0

2 DOCUMENTATION

CHAPTER

ONE

INSTALLATION

Silicone can be installed with pip

pip install silicone

If you also want to run the example notebooks, install additional dependencies using

pip install silicone[notebooks]

Coming soon Silicone can also be installed with conda

conda install -c conda-forge silicone

3

Silicone Documentation, Release 1.3.0

4 Chapter 1. Installation

CHAPTER

TWO

USAGE

All of our usage examples are included in silicone/notebooks.

5

Silicone Documentation, Release 1.3.0

6 Chapter 2. Usage

CHAPTER

THREE

DEVELOPMENT

If you’re interested in contributing to Silicone, we’d love to have you on board! This section of the docs will (once
we’ve written it) detail how to get setup to contribute and how best to communicate.

• Contributing

• Getting setup

– Getting help

∗ Development tools

∗ Other tools

• Formatting

• Buiding the docs

– Gotchas

– Docstring style

• Releasing

– First step

– Hitting the button

• Why is there a Makefile in a pure Python repository?

3.1 Contributing

All contributions are welcome, some possible suggestions include:

• tutorials (or support questions which, once solved, result in a new tutorial :D)

• blog posts

• improving the documentation

• bug reports

• feature requests

• pull requests

Please report issues or discuss feature requests in the Silicone issue tracker. If your issue is a feature request or a bug,
please use the templates available, otherwise, simply open a normal issue :)

7

https://github.com/GranthamImperial/silicone/issues

Silicone Documentation, Release 1.3.0

As a contributor, please follow a couple of conventions:

• Create issues in the Silicone issue tracker for changes and enhancements, this ensures that everyone in the com-
munity has a chance to comment

• Be welcoming to newcomers and encourage diverse new contributors from all backgrounds: see the Python
Community Code of Conduct

• Only push to your own branches, this allows people to force push to their own branches as they need without fear
or causing others headaches

• Start all pull requests as draft pull requests and only mark them as ready for review once they’ve been rebased
onto master, this makes it much simpler for reviewers

• Try and make lots of small pull requests, this makes it easier for reviewers and faster for everyone as review time
grows exponentially with the number of lines in a pull request

3.2 Getting setup

To get setup as a developer, we recommend the following steps (if any of these tools are unfamiliar, please see the
resources we recommend in Development tools):

1. Install conda and make

2. Run make virtual-environment, if that fails you can try doing it manually

1. Change your current directory to Silicone’s root directory (i.e. the one which contains README.rst), cd
silicone

2. Create a virtual environment to use with Silicone python3 -m venv venv

3. Activate your virtual environment source ./venv/bin/activate

4. Upgrade pip pip intall --upgrade pip

5. Install the development dependencies (very important, make sure your virtual environment is active before
doing this) pip install -e .[dev]

3. Make sure the tests pass by running make test-all, if that fails the commands are

1. Activate your virtual environment source ./venv/bin/activate

2. Run the unit and integration tests pytest --cov -r a --cov-report term-missing

3. Test the notebooks pytest -r a --nbval ./notebooks --sanitize ./notebooks/
tests_sanitize.cfg

3.2.1 Getting help

Whilst developing, unexpected things can go wrong (that’s why it’s called ‘developing’, if we knew what we were doing,
it would already be ‘developed’). Normally, the fastest way to solve an issue is to contact us via the issue tracker. The
other option is to debug yourself. For this purpose, we provide a list of the tools we use during our development as
starting points for your search to find what has gone wrong.

8 Chapter 3. Development

https://github.com/GranthamImperial/silicone/issues
https://www.python.org/psf/codeofconduct/
https://www.python.org/psf/codeofconduct/
https://github.com/GranthamImperial/silicone/issues

Silicone Documentation, Release 1.3.0

Development tools

This list of development tools is what we rely on to develop Silicone reliably and reproducibly. It gives you a few
starting points in case things do go inexplicably wrong and you want to work out why. We include links with each of
these tools to starting points that we think are useful, in case you want to learn more.

• Git

• Make

• Conda virtual environments

• Pip and pip virtual environments

• Tests

– we use a blend of pytest and the inbuilt Python testing capabilities for our tests so checkout what we’ve
already done in tests to get a feel for how it works

• Continuous integration (CI)

– we use Travis CI for our CI but there are a number of good providers

• Jupyter Notebooks

– Jupyter is automatically included in your virtual environment if you follow our Getting setup instructions

• Sphinx

Other tools

We also use some other tools which aren’t necessarily the most familiar. Here we provide a list of these along with
useful resources.

• Regular expressions

– we use regex101.com to help us write and check our regular expressions, make sure the language is set to
Python to make your life easy!

3.3 Formatting

To help us focus on what the code does, not how it looks, we use a couple of automatic formatting tools. These
automatically format the code for us and tell use where the errors are. To use them, after setting yourself up (see
Getting setup), simply run make format. Note that make format can only be run if you have committed all your
work i.e. your working directory is ‘clean’. This restriction is made to ensure that you don’t format code without being
able to undo it, just in case something goes wrong.

3.4 Buiding the docs

After setting yourself up (see Getting setup), building the docs is as simple as running make docs (note, run make -B
docs to force the docs to rebuild and ignore make when it says ‘. . . index.html is up to date’). This will build the docs
for you. You can preview them by opening docs/build/html/index.html in a browser.

For documentation we use Sphinx. To get ourselves started with Sphinx, we started with this example then used Sphinx’s
getting started guide.

3.3. Formatting 9

http://swcarpentry.github.io/git-novice/
https://swcarpentry.github.io/make-novice/
https://medium.freecodecamp.org/why-you-need-python-environments-and-how-to-manage-them-with-conda-85f155f4353c
https://www.dabapps.com/blog/introduction-to-pip-and-virtualenv-python/
https://semaphoreci.com/community/tutorials/testing-python-applications-with-pytest
https://docs.pytest.org/en/latest/
https://docs.travis-ci.com/user/for-beginners/
https://travis-ci.com/
https://medium.com/codingthesmartway-com-blog/getting-started-with-jupyter-notebook-for-python-4e7082bd5d46
http://www.sphinx-doc.org/en/master/
https://www.oreilly.com/ideas/an-introduction-to-regular-expressions
regex101.com
http://www.sphinx-doc.org/en/master/
https://pythonhosted.org/an_example_pypi_project/sphinx.html
http://www.sphinx-doc.org/en/master/usage/quickstart.html
http://www.sphinx-doc.org/en/master/usage/quickstart.html

Silicone Documentation, Release 1.3.0

3.4.1 Gotchas

To get Sphinx to generate pdfs (rarely worth the hassle), you require Latexmk. On a Mac this can be installed with
sudo tlmgr install latexmk. You will most likely also need to install some other packages (if you don’t have the
full distribution). You can check which package contains any missing files with tlmgr search --global --file
[filename]. You can then install the packages with sudo tlmgr install [package].

3.4.2 Docstring style

For our docstrings we use numpy style docstrings. For more information on these, here is the full guide and the quick
reference we also use.

3.5 Releasing

3.5.1 First step

1. Test installation with dependencies make test-install

2. Update CHANGELOG.rst

• add a header for the new version between master and the latest bullet point

• this should leave the section underneath the master header empty

3. git add .

4. git commit -m "Release vX.Y.Z"

5. git tag vX.Y.Z

6. Test version updated as intended with make test-install

3.5.2 Hitting the button

Our releases are handled automatically as part of our CI-CD pipeline. Hence all that needs to be done now is simply
push to the repository, this will trigger an automatic release to PyPI.

1. git push

2. git push --tags

If the pipeline fails, one of the developers will receive a notification (and the reasons can then be debugged). If the
pipeline passes, it’s worth going to Silicone’s PyPI and checking that the new release is as intended. You can also check
that a fresh install would install the released version using make test-pypi-install.

10 Chapter 3. Development

https://mg.readthedocs.io/latexmk.html
https://numpydoc.readthedocs.io/en/latest/format.html
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html
https://pypi.org/project/silicone/

Silicone Documentation, Release 1.3.0

3.6 Why is there a Makefile in a pure Python repository?

Whilst it may not be standard practice, a Makefile is a simple way to automate general setup (environment setup in
particular). Hence we have one here which basically acts as a notes file for how to do all those little jobs which we
often forget e.g. setting up environments, running tests (and making sure we’re in the right environment), building
docs, setting up auxillary bits and pieces.

3.6. Why is there a Makefile in a pure Python repository? 11

Silicone Documentation, Release 1.3.0

12 Chapter 3. Development

CHAPTER

FOUR

DATABASE CRUNCHERS API

Database crunchers.

The classes within this module can be used to crunch a database of scenarios. Each ‘Cruncher’ has methods which
return functions which can then be used to infill emissions detail (i.e. calculate ‘follower’ timeseries) based on ‘lead’
emissions timeseries.

4.1 Closest RMS cruncher API

Module for the database cruncher which uses the ‘closest RMS’ technique.

class silicone.database_crunchers.rms_closest.RMSClosest(db)
Bases: _DatabaseCruncher

Database cruncher which uses the ‘closest RMS’ technkque.

This cruncher derives the relationship between two or more variables by finding the scenario which has the most
similar timeseries for the lead gases in the database. The follower gas timeseries is then simply copied from the
closest scenario.

Here, ‘most similar’ is defined as the smallest time-averaged root mean squared (L2) difference. If multiple lead
values are used, they may be weighted differently to account for differences between the reported units. The most
similar model/scenario combination minimises

𝑅𝑀𝑆𝑒𝑟𝑟𝑜𝑟 =
∑︁
𝑙

𝑤𝑙

(︃
1

𝑛

𝑛∑︁
𝑡=0

(𝐸𝑙(𝑡)− 𝑒𝑙(𝑡))
2

)︃1/2

where 𝑙 is a lead gas, 𝑤𝑙 is a weighting for that lead gas, 𝑛 is the total number of timesteps in all lead gas
timeseries, 𝐸𝑙(𝑡) is the lead gas emissions timeseries and 𝑒𝑙(𝑡) is a lead gas emissions timeseries in the infiller
database.

derive_relationship(variable_follower, variable_leaders, weighting=None)
Derive the relationship between the lead and the follow variables from the database.

Parameters

• variable_follower (str) – The variable for which we want to calculate timeseries (e.g.
"Emissions|C5F12").

• variable_leaders (list[str]) – The variable we want to use in order to infer time-
series of variable_follower (e.g. ["Emissions|CO2"]). This may contain multiple
elements.

13

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Silicone Documentation, Release 1.3.0

• weighting (dict{str: float}) – When used with multiple lead variables, this
weighting factor controls the relative importance of different variables for determining
closeness. E.g. if wanting to compare both CO2 and CH4 emissions reported in mass units
but weighted by the AR5 GWP100 metric, this would be {“Emissions|CO2”: 1, “Emis-
sions|CH4”: 28}.

Returns
Function which takes a pyam.IamDataFrame containing variable_leaders timeseries
and returns timeseries for variable_follower based on the derived relationship between
the two. Please see the source code for the exact definition (and docstring) of the returned
function.

Return type
func

Raises

• ValueError – variable_leaders contains more than one variable.

• ValueError – There is no data for variable_leaders or variable_follower in the
database.

4.2 Constant ratio cruncher API

Module for the database cruncher which uses the ‘constant given ratio’ technique.

class silicone.database_crunchers.constant_ratio.ConstantRatio(db=None)
Bases: _DatabaseCruncher

Database cruncher which uses the ‘constant given ratio’ technique.

This cruncher does not require a database upon initialisation. Instead, it requires a constant and a unit to be input
when deriving relations. This constant, 𝑠, is the ratio of the follower variable to the lead variable i.e.:

𝐸𝑓 (𝑡) = 𝑠 * 𝐸𝑙(𝑡)

where 𝐸𝑓 (𝑡) is emissions of the follower variable and 𝐸𝑙(𝑡) is emissions of the lead variable.

derive_relationship(variable_follower, variable_leaders, ratio, units)
Derive the relationship between two variables from the database.

Parameters

• variable_follower (str) – The variable for which we want to calculate timeseries (e.g.
"Emissions|C5F12").

• variable_leaders (list[str]) – The variable we want to use in order to infer time-
series of variable_follower (e.g. ["Emissions|CO2"]).

• ratio (float) – The ratio between the leader and the follower data

• units (str) – The units of the follower data.

Returns
Function which takes a pyam.IamDataFrame containing variable_leaders timeseries
and returns timeseries for variable_follower based on the derived relationship between
the two.

Return type
func

14 Chapter 4. Database crunchers API

https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame

Silicone Documentation, Release 1.3.0

4.3 Equal quantile walk cruncher API

Module for the database cruncher which uses the ‘equal quantile walk’ technique.

class silicone.database_crunchers.equal_quantile_walk.EqualQuantileWalk(db)
Bases: _DatabaseCruncher

Database cruncher which uses the ‘equal quantile walk’ technique.

This cruncher assumes that the amount of effort going into reducing one emission set is equal to that for another
emission, therefore the lead and follow data should be at the same quantile of all pathways in the infiller database.
It calculates the quantile of the lead infillee data in the lead infiller database, then outputs that quantile of the
follow data in the infiller database.

derive_relationship(variable_follower, variable_leaders, smoothing=None, weighting=None)
Derive the relationship between two variables from the database.

Parameters

• variable_follower (str) – The variable for which we want to calculate timeseries (e.g.
"Emissions|C5F12").

• variable_leaders (list[str]) – The variable we want to use in order to infer time-
series of variable_follower (e.g. ["Emissions|CO2"]).

• smoothing (float or string) – By default, no smoothing is done on the distribution. If
a value is provided, it is fed into scipy.stats.gaussian_kde() - see full documentation
there. In short, if a float is input, we fit a Gaussian kernel density estimator with that width
to the points. If a string is used, it must be either “scott” or “silverman”, after those two
methods of determining the best kernel bandwidth.

• weighting (Dict{(str, str) : float}) – The dictionary, mapping the (mode, sce-
nario) tuple onto the weight (relative to a weight of 1 for the default). This does not have
to include all scenarios in df, but cannot include scenarios not in df.

Returns
Function which takes a pyam.IamDataFrame containing variable_leaders timeseries
and returns timeseries for variable_follower based on the derived relationship between
the two. Please see the source code for the exact definition (and docstring) of the returned
function.

Return type
func

Raises

• ValueError – variable_leaders contains more than one variable.

• ValueError – There is no data for variable_leaders or variable_follower in the
database.

4.3. Equal quantile walk cruncher API 15

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

Silicone Documentation, Release 1.3.0

4.4 Interpolate specified scenarios and models cruncher API

class silicone.database_crunchers.interpolate_specified_scenarios_and_models.ScenarioAndModelSpecificInterpolate(db)
Bases: _DatabaseCruncher

Database cruncher which pre-filters to only use data from specific scenarios, then runs the interpolation cruncher
to return values from that set of scenarios. See the documentation of Interpolation for more details.

derive_relationship(variable_follower, variable_leaders, required_scenario='*', required_model='*',
interpkind='linear')

Derive the relationship between two variables from the database.

Parameters

• variable_follower (str) – The variable for which we want to calculate timeseries (e.g.
"Emissions|CH4").

• variable_leaders (list[str]) – The variable(s) we want to use in order to infer time-
series of variable_follower (e.g. ["Emissions|CO2"]).

• required_scenario (str or list[str]) – The string(s) which all relevant scenarios
are required to match. This may have s to represent wild cards. It defaults to “” to accept
all scenarios.

• required_model (str or list[str]) – The string(s) which all relevant models are
required to match. This may have s to represent wild cards. It defaults to “” to accept all
models.

• interpkind (str) – The style of interpolation. By default, linear, but can also be any
value accepted as the “kind” option in scipy.interpolate.interp1d, or “PchipInterpolator”,
in which case scipy.interpolate.PchipInterpolator is used. Care should be taken if using
non-default interp1d options, as they are either uneven or have “ringing”

Returns
Function which takes a pyam.IamDataFrame containing variable_leaders timeseries
and returns timeseries for variable_follower based on the derived relationship between
the two. Please see the source code for the exact definition (and docstring) of the returned
function.

Return type
func

Raises
ValueError – There is no data of the appropriate type in the database. There may be a typo
in the SSP option.

4.5 Latest Time Ratio API

Module for the database cruncher which uses the ‘latest time ratio’ technique.

class silicone.database_crunchers.latest_time_ratio.LatestTimeRatio(db)
Bases: _DatabaseCruncher

Database cruncher which uses the ‘latest time ratio’ technique.

This cruncher derives the relationship between two variables by simply assuming that the follower timeseries
is equal to the lead timeseries multiplied by a scaling factor. The scaling factor is derived by calculating the
ratio of the follower variable to the lead variable in the latest year in which the follower variable is available

16 Chapter 4. Database crunchers API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame
https://docs.python.org/3/library/exceptions.html#ValueError

Silicone Documentation, Release 1.3.0

in the database. Additionally, since the derived relationship only depends on a single point in the database, no
regressions or other calculations are performed.

Once the relationship is derived, the ‘filler’ function will infill following:

𝐸𝑓 (𝑡) = 𝑅 * 𝐸𝑙(𝑡)

where 𝐸𝑓 (𝑡) is emissions of the follower variable and 𝐸𝑙(𝑡) is emissions of the lead variable, both in the infillee
database.

𝑅 is the scaling factor, calculated as

𝑅 =
𝐸𝑓 (𝑡last)

𝑒𝑙(𝑡last)

where 𝑡last is the average of all values of the follower gas at the latest time it appears in the database, and the
lower case 𝑒 represents the infiller database.

derive_relationship(variable_follower, variable_leaders)
Derive the relationship between two variables from the database.

Parameters

• variable_follower (str) – The variable for which we want to calculate timeseries (e.g.
"Emissions|C5F12").

• variable_leaders (list[str]) – The variable we want to use in order to infer time-
series of variable_follower (e.g. ["Emissions|CO2"]). Note that the ‘latest time ra-
tio’ methodology gives the same result, independent of the value of variable_leaders
in the database.

Returns
Function which takes a pyam.IamDataFrame containing variable_leaders timeseries
and returns timeseries for variable_follower based on the derived relationship between
the two. Please see the source code for the exact definition (and docstring) of the returned
function.

Return type
func

Raises

• ValueError – variable_leaders contains more than one variable.

• ValueError – There is no data for variable_leaders or variable_follower in the
database.

4.6 Linear interpolation cruncher API

Module for the database cruncher which makes a linear interpolator between known values

class silicone.database_crunchers.linear_interpolation.LinearInterpolation(db)
Bases: Interpolation

Database cruncher which uses linear interpolation. This cruncher is deprecated; use Interpolation instead.

This cruncher derives the relationship between two variables by linearly interpolating between values in the
cruncher database. It does not do any smoothing and is best-suited for smaller databases.

In the case where there is more than one value of the follower variable for a given value of the leader variable,
the average will be used. For example, if one scenario has CH4 emissions of 10 MtCH4/yr whilst another has

4.6. Linear interpolation cruncher API 17

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

Silicone Documentation, Release 1.3.0

CH4 emissions of 20 MtCH4/yr in 2020 whilst both scenarios have CO2 emissions of exactly 15 GtC/yr in 2020,
the interpolation will use the average value from the two scenarios i.e. 15 Mt CH4/yr.

Beyond the bounds of input data, the interpolation is held constant. For example, if the maximum CO2 emissions
in 2020 in the database is 25 GtC/yr, and CH4 emissions for this level of CO2 emissions are 15 MtCH4/yr, then
even if we infill using a CO2 emissions value of 100 GtC/yr in 2020, the returned CH4 emissions will be 15
MtCH4/yr.

derive_relationship(variable_follower, variable_leaders)
Derive the relationship between two variables from the database.

Parameters

• variable_follower (str) – The variable for which we want to calculate timeseries (e.g.
"Emissions|CH4").

• variable_leaders (list[str]) – The variable(s) we want to use in order to infer time-
series of variable_follower (e.g. ["Emissions|CO2"]).

• interpkind (str) – The style of interpolation. By default, linear (hence the name), but
can also be any value accepted as the “kind” option in scipy.interpolate.interp1d.

Returns
Function which takes a pyam.IamDataFrame containing variable_leaders timeseries
and returns timeseries for variable_follower based on the derived relationship between
the two. Please see the source code for the exact definition (and docstring) of the returned
function.

Return type
func

Raises
ValueError – There is no data of the appropriate type in the database.

4.7 Quantile rolling windows cruncher API

Module for the database cruncher which uses the ‘rolling windows’ technique.

class silicone.database_crunchers.quantile_rolling_windows.QuantileRollingWindows(db)
Bases: _DatabaseCruncher

Database cruncher which uses the ‘rolling windows’ technique.

This cruncher derives the relationship between two variables by performing quantile calculations between the
follower timeseries and the lead timeseries. These calculations are performed at each timestep in the timeseries,
independent of the other timesteps.

For each timestep, the lead timeseries axis is divided into multiple evenly spaced windows (to date this is only
tested on 1:1 relationships but may work with more than one lead timeseries). In each window, every data point
in the database is included. However, the data points receive a weight given by

𝑤(𝑥, 𝑥window) =
1

1 + (𝑑𝑛)2

where 𝑤 is the weight and 𝑑𝑛 is the normalised distance between the centre of the window and the data point’s
position on the lead timeseries axis.

𝑑𝑛 is calculated as

𝑑𝑛 =
𝑥− 𝑥window

𝑓 × (𝑏2)

18 Chapter 4. Database crunchers API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame
https://docs.python.org/3/library/exceptions.html#ValueError

Silicone Documentation, Release 1.3.0

where 𝑥 is the position of the data point on the lead timeseries axis, 𝑥window is the position of the centre of the
window on the lead timeseries axis, 𝑏 is the distance between window centres and 𝑓 is a decay factor which
controls how much less points away from 𝑥window are weighted. If 𝑓 = 1 then a point which is half the width
between window centres away receives a weighting of 1/2. Lowering the value of 𝑓 cause points further from
the window centre to receive less weight.

With these weightings, the desired quantile of the data is then calculated. This calculation is done by sorting
the data by the database’s follow timeseries values (then by lead timeseries values in the case of identical follow
values). From here, the weight of each point is calculated following the formula given above. We calculate the
cumulative sum of weights, and then the cumulative sum up to half weights, defined by

𝑐ℎ𝑤 = 𝑐𝑤 − 0.5× 𝑤

where 𝑐𝑤 is the cumulative weights and 𝑤 is the raw weights. This ensures that quantiles less than half the
weight of the smallest follow value return the smallest follow value and more than one minus half the weight
of the largest follow value return the largest value. Without such a shift, the largest value is only returned if the
quantile is 1, leading to a bias towards smaller values.

With these calculations, we have determined the relationship between the follow timeseries values and the quan-
tile i.e. cumulative sum of (normalised) weights. We can then determine arbitrary quantiles by linearly interpo-
lating.

If the option use_ratio is set to True, instead of returning the absolute value of the follow at this quantile, we
return the quantile of the ratio between the lead and follow data in the database, multiplied by the actual lead
value of the database being infilled.

By varying the quantile, this cruncher can provide ranges of the relationship between different variables. For
example, it can provide the 90th percentile (i.e. high end) of the relationship between e.g. Emissions|CH4
and Emissions|CO2 or the 50th percentile (i.e. median) or any other arbitrary percentile/quantile choice.
Note that the impact of this will strongly depend on nwindows and decay_length_factor. Using the
TimeDepQuantileRollingWindows class makes it is possible to specify a dictionary of dates to quantiles,
in which case we return that quantile for that year or date.

derive_relationship(variable_follower, variable_leaders, quantile=0.5, nwindows=11,
decay_length_factor=1, use_ratio=False)

Derive the relationship between two variables from the database.

Parameters

• variable_follower (str) – The variable for which we want to calculate timeseries (e.g.
"Emissions|CH4").

• variable_leaders (list[str]) – The variable(s) we want to use in order to infer time-
series of variable_follower (e.g. ["Emissions|CO2"]).

• quantile (float) – The quantile to return in each window.

• nwindows (int) – The number of window centers to use when calculating the relationship
between the follower and lead gases.

• decay_length_factor (float) – Parameter which controls how strongly points away
from the window’s centre should be weighted compared to points at the centre. Larger
values give points further away increasingly less weight, smaller values give points further
away increasingly more weight.

• use_ratio (bool) – If false, we use the quantile value of the weighted mean absolute
value. If true, we find the quantile weighted mean ratio between lead and follow, then
multiply the ratio by the input value.

4.7. Quantile rolling windows cruncher API 19

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Silicone Documentation, Release 1.3.0

Returns
Function which takes a pyam.IamDataFrame containing variable_leaders timeseries
and returns timeseries for variable_follower based on the derived relationship between
the two. Please see the source code for the exact definition (and docstring) of the returned
function.

Return type
func

Raises

• ValueError – There is no data for variable_leaders or variable_follower in the
database.

• ValueError – quantile is not between 0 and 1.

• ValueError – nwindows is not equivalent to an integer or is not greater than 1.

• ValueError – decay_length_factor is 0.

4.8 Time dependent quantile rolling windows cruncher API

Module for the database cruncher which uses the ‘rolling windows’ technique with different quantiles in different years.

class silicone.database_crunchers.time_dep_quantile_rolling_windows.TimeDepQuantileRollingWindows(db)
Bases: _DatabaseCruncher

Database cruncher which uses QuantileRollingWindows with different quantiles in every year/datetime.

derive_relationship(variable_follower, variable_leaders, time_quantile_dict, **kwargs)
Derive the relationship between two variables from the database.

For details of most parameters, see QuantileRollingWindows. The one different parameter is
time_quantile_dict, described below:

Parameters

• variable_follower (str) – The variable for which we want to calculate timeseries (e.g.
"Emissions|CH4").

• variable_leaders (list[str]) – The variable(s) we want to use in order to infer time-
series of variable_follower (e.g. ["Emissions|CO2"]).

• time_quantile_dict (dict{datetime or int: float}) – Every year or datetime
in the infillee database must be specified as a key. The value is the quantile to use in that
year. Note that the impact of the quantile value is strongly dependent on the arguments
passed to QuantileRollingWindows.

• **kwargs – Passed to QuantileRollingWindows.

Returns
Function which takes a pyam.IamDataFrame containing variable_leaders timeseries
and returns timeseries for variable_follower based on the derived relationship between
the two. Please see the source code for the exact definition (and docstring) of the returned
function.

Return type
func

20 Chapter 4. Database crunchers API

https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame

Silicone Documentation, Release 1.3.0

Raises
ValueError – Not all times in time_quantile_dict have data in the database.

4.9 Time dependent ratio cruncher API

Module for the database cruncher which uses the ‘time-dependent ratio’ technique.

class silicone.database_crunchers.time_dep_ratio.TimeDepRatio(db)
Bases: _DatabaseCruncher

Database cruncher which uses the ‘time-dependent ratio’ technique.

This cruncher derives the relationship between two variables by simply assuming that the follower timeseries is
equal to the lead timeseries multiplied by a time-dependent scaling factor. The scaling factor is the ratio of the
follower variable to the lead variable. If the database contains many such pairs, the scaling factor is the ratio
between the means of the values. By default, the calculation will include only values where the lead variable
takes the same sign (+ or -) in the infilling database as in the case infilled. This prevents getting negative values
of emissions that cannot be negative. To allow cases where we have no data of the correct sign, set same_sign =
False in derive_relationship.

Once the relationship is derived, the ‘filler’ function will infill following:

𝐸𝑓 (𝑡) = 𝑅(𝑡) * 𝐸𝑙(𝑡)

where 𝐸𝑓 (𝑡) is emissions of the follower variable and 𝐸𝑙(𝑡) is emissions of the lead variable.

𝑅(𝑡) is the scaling factor, calculated as the ratio of the means of the the follower and the leader in the infiller
database, denoted with lower case e. By default, we include only cases where sign(e_l(t)) is the same in both
databases). The cruncher will raise a warning if the lead data is ever negative, which can create complications
for the use of this cruncher.

𝑅(𝑡) =
𝑚𝑒𝑎𝑛(𝑒𝑓 (𝑡))

𝑚𝑒𝑎𝑛(𝑒𝑙(𝑡))
)

derive_relationship(variable_follower, variable_leaders, same_sign=True, only_consistent_cases=True)
Derive the relationship between two variables from the database.

Parameters

• variable_follower (str) – The variable for which we want to calculate timeseries (e.g.
"Emissions|C5F12").

• variable_leaders (list[str]) – The variable we want to use in order to infer time-
series of variable_follower (e.g. ["Emissions|CO2"]).

• same_sign (bool) – Do we want to only use data where the leader has the same sign in
the infiller and infillee data? If so, we have a potential error from not having data of the
correct sign, but have more confidence in the sign of the follower data.

• only_consistent_cases (bool) – Do we want to only use model/scenario combinations
where both lead and follow have data at all times? This will reduce the risk of inconsisten-
cies or unevenness in the results, but will slightly decrease performance speed if you know
the data is consistent. Senario/model pairs where data is only returned at certain times will
be removed, as will any scenarios not returning both lead and follow data.

4.9. Time dependent ratio cruncher API 21

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Silicone Documentation, Release 1.3.0

Returns
Function which takes a pyam.IamDataFrame containing variable_leaders timeseries
and returns timeseries for variable_follower based on the derived relationship between
the two. Please see the source code for the exact definition (and docstring) of the returned
function.

Return type
func

Raises

• ValueError – variable_leaders contains more than one variable.

• ValueError – There is no data for variable_leaders or variable_follower in the
database.

22 Chapter 4. Database crunchers API

https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

CHAPTER

FIVE

MULTIPLE INFILLERS API

Multiple infillers

Multiple infillers provide easy-to-use infiller options for the most common use-cases.

5.1 Decompose collection with time-dependent ratio API

Uses the ‘time-dependent ratio’ database cruncher designed for constructing an aggregate variable and breaking this
mix into its constituents.

class silicone.multiple_infillers.decompose_collection_with_time_dep_ratio.DecomposeCollectionTimeDepRatio(db)
Bases: object

Constructs an aggregate variable and uses the ‘time-dependent ratio’ technique to calculate what this predicts for
our database.

infill_components(aggregate, components, to_infill_df, metric_name='AR5GWP100',
only_consistent_cases=True)

Derive the relationship between the composite variables and their sum, then use this to deconstruct the sum.

Parameters

• aggregate (str) – The variable for which we want to calculate timeseries (e.g.
"Emissions|CO2"). Unlike in most crunchers, we do not expect the database to already
contain this data.

• components (list[str]) –

The variables whose sum should be equal to the timeseries of the aggregate
(e.g. ["Emissions|CO2|AFOLU", "Emissions|CO2|Energy"]).

• to_infill_df (pyam.IamDataFrame) – The dataframe that already contains the
aggregate variable, but needs the components to be infilled.

• metric_name (str) – The name of the conversion metric to use. This will usually be
AR<4/5/6>GWP100.

• only_consistent_cases (bool) – Do we want to only use model/scenario combinations
where all aggregate and components have data at all times? This will reduce the risk of
inconsistencies or unevenness in the results, but may reduce the amount of data.

Returns
The infilled data resulting from the calculation.

Return type
pyam.IamDataFrame

23

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame

Silicone Documentation, Release 1.3.0

Raises
ValueError – There is no data for variable_leaders or variable_follower in the
database.

5.2 Infill all required emissions for openscm API

silicone.multiple_infillers.infill_all_required_emissions_for_openscm.infill_all_required_variables(to_fill,
database,
vari-
able_leaders,
re-
quired_variables_list=None,
cruncher=<class
'sil-
i-
cone.database_crunchers.quantile_rolling_windows.QuantileRollingWindows'>,
out-
put_timesteps=None,
in-
filled_data_prefix=None,
to_fill_old_prefix=None,
check_data_returned=False,
**kwargs)

This is function designed to infill all required data given a minimal amount of input.

Parameters

• to_fill (pyam.IamDataFrame) – The dataframe which is to be infilled

• database (pyam.IamDataFrame) – The dataframe containing all information to be used in
the infilling process.

• variable_leaders (list[str]) – The name of the variable(s) found in to_fill which
should be used to determine the values of the other variables. For most infillers (includ-
ing the default) this list must contain only one entry. E.g. [“Emissions|CO2”]

• required_variables_list (list[str]) – The list of variables to infill. Each will be
done separately. The default behaviour (None option) will result in this being filled with the
complete list of required emissions.

• cruncher – The class of cruncher to use to compute the infilled values. Defaults to Quan-
tileRollingWindows, which uses the median value of a rolling window. See the cruncher
documentation for more details.

• output_timesteps (list[int or datetime]) – List of times at which to return infilled
values. Will interpolate values in between known data, but will not extend beyond the range
of data provided.

• infilled_data_prefix (str) – A string that should be prefixed on all the variable names
of the results returned. Used to distinguish returned values from those input.

• to_fill_old_prefix (str) – Any string already found at the beginning of the variables
names of the input to_fill dataframe. This will be removed before comparing the variable
names with database.

24 Chapter 5. Multiple infillers API

https://docs.python.org/3/library/exceptions.html#ValueError
https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame
https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Silicone Documentation, Release 1.3.0

• check_data_returned (bool) – If true, we perform checks that all desired data has been
returned. Potential reasons for failing this include requesting results at times outside our
input time range, as well as code bugs.

• kwargs (**) – An optional dictionary of keyword : arguments to be used with the cruncher.

Returns
The infilled dataframe (including input data) at requested times. All variables now begin with
infilled_data_prefix instead of to_fill_old_prefix.

Return type
pyam.IamDataFrame

5.3 Infill composite values API

silicone.multiple_infillers.infill_composite_values.infill_composite_values(df, compos-
ite_dic=None)

Constructs a series of aggregate variables, calculated as the sums of variables that have been reported. If given
factors terms too, the terms will be multiplied by the factors before summing.

Parameters

• df (pyam.IamDataFrame) – Input data from which to construct consistent values. This is
assumed to be fully infilled. This will not be checked.

• composite_dic (dict{str: list[str]} or dict{str: dict{str: float}})
– Key: The variable names of the composite. Value: The variable names of the constituents,
which may include wildcards (‘*’). Optionally, these values may be dictionaries of the names
to factors, which we multiply the numbers by before summing them. Defaults to a list of PFC,
HFC, F-Gases, CO2 and Kyoto gases.

Returns
pyam.IamDataFrame containing the composite values.

Return type
pyam.IamDataFrame

5.3. Infill composite values API 25

https://docs.python.org/3/library/functions.html#bool
https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame
https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame
https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame

Silicone Documentation, Release 1.3.0

26 Chapter 5. Multiple infillers API

CHAPTER

SIX

TIME PROJECTORS API

Time projectors

The classes in this module are used to infer values for a scenario at later times given the trends before that time.

6.1 Extend latest time quantile

Module for the database cruncher which uses the ‘latest time quantile’ technique.

class silicone.time_projectors.extend_latest_time_quantile.ExtendLatestTimeQuantile(db)
Bases: object

Time projector which extends the timeseries of a variable by assuming that it remains that a fixed quantile in the
infiller database, the quantile it is in at the last available time. This is the natural counterpart to the equal quantile
walk extending a single variable over time rather than over different emissions.

It assumes that the target timeseries is shorter than the infiller timeseries.

derive_relationship(variable, smoothing=None, weighting=None)
Derives the quantiles of the variable in the infiller database. Note that this takes only one variable as an
argument, whereas most crunchers take two.

Parameters

• variable (str) – The variable for which we want to calculate timeseries (e.g.
"Emissions|CO2").

• smoothing (float or string) – By default, no smoothing is done on the distribution. If
a value is provided, it is fed into scipy.stats.gaussian_kde() - see full documentation
there. In short, if a float is input, we fit a Gaussian kernel density estimator with that width
to the points. If a string is used, it must be either “scott” or “silverman”, after those two
methods of determining the best kernel bandwidth.

• weighting (None or dict{(str, str): float}) – The dictionary, mapping the
(model and scenario) tuple onto the weight (relative to a weight of 1 for the default). This
does not have to include all scenarios in df, but cannot include scenarios not in df.

Returns
Function which takes a pyam.IamDataFrame containing variable timeseries and returns
these timeseries extended until the latest time in the infiller database.

Return type
func

Raises
ValueError – There is no data for variable in the database.

27

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame
https://docs.python.org/3/library/exceptions.html#ValueError

Silicone Documentation, Release 1.3.0

6.2 Extend RMS closest

Module for the database cruncher that uses the rms closest extension method

class silicone.time_projectors.extend_rms_closest.ExtendRMSClosest(db)
Bases: object

Time projector which extends the timeseries of a variable with future timesteps infilled using the values from the
‘closest’ pathway in the infilling database.

We define the closest pathway as the pathway with the smallest time-averaged (over the reported time steps) root
mean squared difference

derive_relationship(variable)
Derives the values for the model/scenario combination in the database with the least RMS error.

Parameters
variable (str) – The variable for which we want to calculate the timeseries (e.g. Emis-
sions|CO2).

Returns
Filled in data (without original source data)

Return type
obj: pyam.IamDataFrame

6.3 Linear extender

Module for the database cruncher which extends using a linear trend

class silicone.time_projectors.linear_extender.LinearExtender(db=None)
Bases: object

Time projector which extends the timeseries of a variable using a linear trend. You can either specify a gradient
for the line (possibly zero) or a point in the future.

derive_relationship(variable, gradient=None, year_value=None, times=None)
Derives the function to return a linear trend following from the last datapoint

Parameters

• variable (str) – The variable for which we want to calculate timeseries (e.g.
"Emissions|CO2").

• gradient (float or None) – The gradient of the variable after its last available data-
point, in the emissions units per year. If not provided, year_value must be provided instead.

• year_value (None or tuple(int or datetime, float)) – The value of the vari-
able at a given future time, e.g. (2050, 0) to extend the data to net zero in 2050. If not
provided, gradient must be provided instead.

• times (None or list[int or datetime]) – The times to return entries at. Only re-
quired if no database was used during initalisation.

Returns
Function which takes a pyam.IamDataFrame containing variable timeseries and returns
these timeseries extended until the latest time in the infiller database.

28 Chapter 6. Time projectors API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame

Silicone Documentation, Release 1.3.0

Return type
func

Raises
ValueError – There is no data for variable in the database.

6.3. Linear extender 29

https://docs.python.org/3/library/exceptions.html#ValueError

Silicone Documentation, Release 1.3.0

30 Chapter 6. Time projectors API

CHAPTER

SEVEN

STATS API

Silicone’s custom statistical operations.

silicone.stats.calc_all_emissions_correlations(emms_df, years, output_dir)
Save csv files of the correlation coefficients and the rank correlation coefficients between emissions at specified
times.

This function includes all undivided emissions (i.e. results recorded as Emissions|X) and CO2 emissions split
once (i.e. Emissions|CO2|X). It does not include Kyoto gases. It will also save the average absolute value of the
coefficients.

Parameters

• emms_df (pyam.IamDataFrame) – The database to search for correlations between named
values

• output_dir (str) – The folder location to save the files.

• years (list[int]) – The years upon which to calculate correlations.

• created (Files) –

• ------------- –

• "variable_counts.csv" (the number of scenario/model pairs where the
emissions) –

• occurs. (data) –

• "gases_correlation_{year}.csv" (The Pearson's correlation between gases
emissions) – in a given year.

• "gases_rank_correlation_{year}.csv" (The Spearman's rank correlation
between) –

• year (gases in a given) –

• "time_av_absolute_correlation_{}_to_{}.csv" (The magnitude of the
Pearson's) –

• emissions (correlation between) –

• requested. (averaged over the years) –

• "time_av_absolute_rank_correlation_{}_to_{}.csv" (The magnitude of the
Spearman's) – rank correlation between emissions, averaged over the years requested.

• "time_variance_rank_correlation_{}_to_{}.csv" (The variance over time
in the rank) – correlation values above.

31

https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

Silicone Documentation, Release 1.3.0

silicone.stats.calc_quantiles_of_data(distribution, points_to_quant, smoothing=None, weighting=None,
to_quantile=True)

Calculates the quantiles of points_to_quant in the distribution of values described by distribution. Optionally
treats points_to_quant as quantiles and returns the values that would lead to them instead.

Parameters

• distribution (pd.Series) – The distribution of values.

• points_to_quant (pd.Series) – The points which we want find: if to_quantile is True
(default) these are the values which we will compare to the distribution, if False, these are
the quantiles which we want to find.

• smoothing (float or string) – By default, no smoothing is done on the distribution. If
a value is provided, it is fed into scipy.stats.gaussian_kde() - see full documentation
there. In short, if a float is input, we fit a Gaussian kernel density estimator with that width
to the points. If a string is used, it must be either “scott” or “silverman”, after those two
methods of determining the best kernel bandwidth.

• weighting (None or Series) – If a series, must have the same indices as distribution,
giving the relative weights of each point.

• to_quantile (Bool) – If True, we return the quantiles of the data in points_to_quant. If
False, we instead treat points_to_quant as the quantiles themselves (they must all be 0-1)
and return the values in distribution that occur at these quantiles.

Returns
An array with one row and a column for each entry in points_to_quant, containing the quantiles
of these points in order. Or, if to_quantile is False, containing the values corresponding to the
quantiles points_to_quant.

Return type
np.ndarray

silicone.stats.rolling_window_find_quantiles(xs, ys, quantiles, nwindows=11, decay_length_factor=1)
Perform quantile analysis in the y-direction for x-weighted data.

Divides the x-axis into nwindows of equal length and weights data by how close they are to the center of these
windows. Then returns the quantiles of this weighted data. Quantiles are defined so that the values returned are
always equal to a y- value in the data - there is no interpolation. Extremal points are given their full weighting,
meaning this will not agree with the np.quantiles under uniform weighting (which effectively gives 0 weight to
min and max values).

The weighting of a point at 𝑥 for a window centered at 𝑥0 is:

𝑤 =
1

1 +
(︁

𝑥−𝑥0

𝑙𝑤𝑖𝑛𝑑𝑜𝑤
× 𝑓𝑑𝑙

)︁2
for 𝑙𝑤𝑖𝑛𝑑𝑜𝑤 the window width (range of values divided by nwindows -1) and 𝑓𝑑𝑙 the decay_length_factor.

Parameters

• xs (np.ndarray, pd.Series) – The x co-ordinates to use in the regression.

• ys (np.ndarray, pd.Series) – The y co-ordinates to use in the regression.

• quantiles (list-like) – The quantiles to calculate in each window

• nwindows (int) – How many points to evaluate between x_max and x_min. Must be > 1.

• decay_length_factor (float) – gives the distance over which the weighting of the values
falls to 1/4, relative to half the distance between window centres. Defaults to 1.

32 Chapter 7. Stats API

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Silicone Documentation, Release 1.3.0

Returns
Quantile values at the window centres.

Return type
pd.DataFrame

Raises
AssertionError – xs and ys don’t have the same shape

33

https://docs.python.org/3/library/exceptions.html#AssertionError

Silicone Documentation, Release 1.3.0

34 Chapter 7. Stats API

CHAPTER

EIGHT

UTILS API

silicone.utils.convert_units_to_MtCO2_equiv(df, metric_name='AR5GWP100')
Converts the units of gases reported in kt into Mt CO2 equivalent per year

Uses GWP100 values from either (by default) AR5 or AR4 IPCC reports.

Parameters

• df (pyam.IamDataFrame) – The input dataframe whose units need to be converted.

• metric_name (str) – The name of the conversion metric to use. This will usually be
AR<4/5/6>GWP100.

Returns
The input data with units converted.

Return type
pyam.IamDataFrame

silicone.utils.download_or_load_sr15(filename, valid_model_ids='*')
Load SR1.5 data, if it isn’t there, download it

Parameters

• filename (str) – Filename in which to look for/save the data

• valid_model_ids (str) – Models to return from data

Returns
The loaded data

Return type
obj: pyam.IamDataFrame

silicone.utils.find_matching_scenarios(options_df, to_compare_df, variable_follower, variable_leaders,
classify_scenarios, classify_models=['*'], return_all_info=False,
use_change_not_abs=False)

Groups scenarios and models into different classifications and uses those to work out which group contains a
trendline most similar to the data. These combinations may group several models/scenarios together by means
of wild cards. Most similar means having the smallest total squared distance between the to_compare_df value
of variable_follower and the variable_follower values interpolated in options_df at the variable_leaders points
in to_compare_df, i.e. assuming errors only exist in variable_follower. In the event of a tie between different
scenario/model classifications, it returns the scenario/model combination that occurs earlier in the input lists,
looping through scenarios first.

Parameters

• options_df (pyam.IamDataFrame) – The dataframe containing the data for each scenario
and model

35

https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame

Silicone Documentation, Release 1.3.0

• to_compare_df (pyam.IamDataFrame) – The dataframe we wish to find the scenario
group closest to. May contain one or more scenarios, we minimise the least squared errors
for all the data colleectively.

• variable_follower (str) – The variable we want to interpolate and compare to the value
in to_compare_df

• variable_leaders (list[str]) – The variable(s) we want to use to construct the inter-
polation (e.g. ["Emissions|CO2"]). In the event that there are multiple, we interpolate
with each one separately and minimise the sum of the squared errors.

• classify_scenarios (list[str]) – The names of scenarios or groups of scenarios that
are possible matches. This may have “*”s to represent wild cards, hence multiple scenarios
will have all their data combined to make the interpolator.

• classify_models (list[str]) – The names of models or groups of models that are pos-
sible matches. This may have “*”s to represent wild cards, hence multiple models will have
all their data combined to make the interpolator.

• return_all_info (bool) – If True, instead of simply returning the strings specifying the
closest scenario/model match, we return all scenario/model combinations in order of prefer-
ence, along with the rms distance, quantifying the closeness.

• use_change_not_abs (bool) – If True, the code looks for the trend with the closest deriva-
tives rather than the closest absolute value, i.e. closest trend allowing for an offset. This
requires data from more than one time.

Returns

• if return_all_info == False

• (string, string) – Strings specifying the model (first) and scenario (second) classifications
that best match the data.

• if return_all_info == True

• dict – Maps the model and scenario classification strings to the measure of closeness.

Raises
ValueError – Not all required timepoints are present in the database we crunched, we have
{dates we have} but you passed in {dates we need}.”

silicone.utils.get_sr15_scenarios(output_file, valid_model_ids)
Collects world-level data from the IIASA database for the named models and saves them to a given location.

Parameters

• output_file (str) – File name and location for data to be saved

• valid_model_ids (list[str]) – Names of models that are to be fetched.

silicone.utils.return_cases_which_consistently_split(df, aggregate, components, how_close=None,
metric_name='AR5GWP100')

Returns model-scenario tuples which correctly split up the to_split into the various components. Components
may contain wildcard “*”s to match several variables.

Parameters

• df (pyam.IamDataFrame) – The input dataframe.

• aggregate (str) – Name of the variable that should split into the others

• components (list[str]) – List of the variable names whose sum should equal the to_split
value (if expressed in common units).

36 Chapter 8. Utils API

https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Silicone Documentation, Release 1.3.0

• how_close (dict) – This is a dictionary of numpy.isclose options specifying how exact
the match must be for the case to be included as passing. By default we specify a relative
tolerance of 1% (‘rtol’: 1e-2). The syntax for this can be found in the numpy documentation.

• metric_name (str) – The name of the conversion metric to use. This will usually be
AR<4/5/6>GWP100.

Returns
List of consistent (Model name, scenario name, region name) tuples.

Return type
list[(str, str, str)]

37

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Silicone Documentation, Release 1.3.0

38 Chapter 8. Utils API

CHAPTER

NINE

CHANGELOG

9.1 [v1.3.0] - 14 Oct 2022

9.1.1 Added

• (#146) Added the ability to do non-linear interpolation by introducing Interpolation.

9.1.2 Changed

• (#149) Checked consistency of time extender database before extending at constant quantiles.

• (#142) Sped up RMS closest

• (#146) Deprecated the linear interpolator LinearInterpolation in favour of a generic interpolator
Interpolation.

• (#150) Added more info when returning an error message in multiple infillers.

9.1.3 Fixed

• (#149) Ensured RMS closest works with the latest version of pyam. Bugfix for a warning in in-
fill_composite_values

• (#144) RMS closest no longer causes pd.core.common.SettingWithCopyWarning to be raised

• (#147) Filter prevents including data from the wrong regions in DecomposeCollectionTimeDepRatio. Note-
book fixed to run with updates in python 3.8.

9.2 [v1.2.0] - 28 Sept 2021

9.2.1 Added

• (#139) Support for pyam-iamc>1.0

• (#135) Added html documentation of the time projectors

39

https://github.com/GranthamImperial/silicone/pull/146
https://github.com/GranthamImperial/silicone/pull/149
https://github.com/GranthamImperial/silicone/pull/142
https://github.com/GranthamImperial/silicone/pull/146
https://github.com/GranthamImperial/silicone/pull/150
https://github.com/GranthamImperial/silicone/pull/149
https://github.com/GranthamImperial/silicone/pull/144
https://github.com/GranthamImperial/silicone/pull/147
https://github.com/GranthamImperial/silicone/pull/139
https://github.com/GranthamImperial/silicone/pull/135

Silicone Documentation, Release 1.3.0

9.2.2 Changed

• (#138) Remove Python3.6 support

• (#138) Improved speed of silicone.multiple_infillers.infill_all_required_emissions_for_openscm()
by removing multiple loops (note that API did not change)

9.3 [v1.1.0] - 12 July 2021

9.3.1 Added

• (#134) Added Gaurav to author list.

• (#132) Added an additional time projector (Linear Extender) that simply extends the latest data to reach a spec-
ified point or by a constant gradient.

• (#129) Added an additional time projector (Extend RMS closest) that extends a pathway to cover later times by
selecting future data from the closest pathway.

• (#126) Added the first time projector (Extend latest time quantile) that extends a pathway to cover later times,
assuming it remains at the same quantile.

9.3.2 Changed

• (#133) More fixes to allow compatibility with pyam updates.

• (#131) Updated to allow compatibility with latest versions of pyam, openscm-units, coverage, pytest and black

9.3.3 Fixed

• (#130) Reformatted files to make the linter happy (no functional changes).

9.4 [v1.0.3]

9.4.1 Changed

• (#124) Neatened up the changelog

9.5 [v1.0.2] - 4 Jan 2021

9.5.1 Changed

• (#121) Updated to openscm-units>0.2

40 Chapter 9. Changelog

https://github.com/GranthamImperial/silicone/pull/138
https://github.com/GranthamImperial/silicone/pull/138
https://github.com/GranthamImperial/silicone/pull/134
https://github.com/GranthamImperial/silicone/pull/132
https://github.com/GranthamImperial/silicone/pull/129
https://github.com/GranthamImperial/silicone/pull/126
https://github.com/GranthamImperial/silicone/pull/133
https://github.com/GranthamImperial/silicone/pull/131
https://github.com/GranthamImperial/silicone/pull/130
https://github.com/GranthamImperial/silicone/pull/124
https://github.com/GranthamImperial/silicone/pull/121

Silicone Documentation, Release 1.3.0

9.5.2 Fixed

• (#123) Made the installation runner avoid prerelease.

9.6 [v1.0.1] - 27 Oct 2020

9.6.1 Added

• (#115) Enabled multiple lead gases to be used with RMS closest cruncher.

9.6.2 Changed

• (#119) Updated to work with pyam v0.8

9.7 [v1.0.0] - 9 Sept 2020

9.7.1 Initial release

• (#116) Pinned black

• (#113) Added a warning for using ratio-based crunchers with negative values. Fixed some unit conversion todos
(not user-facing).

• (#112) Enabled more general unit conversion, bug fix and improvement for infill_composite_values.

• (#111) Minor improvements to error messages and documentation.

• (#110) Gave an option to time_dep_ratio and decompose_collection to ignore model/scenario combinations miss-
ing values at some required times.

• (#108) Added a multiple infiller to split up an aggregate with a remainder. Disabled test for downloading database.

• (#103) Update github address to GranthamImperial.

• (#101) Update release docs

• (#93) Add regular test of install from PyPI

• (#102) Minor bugfix for nan handling in Equal Quantile Walk.

• (#100) Added funding info to readme and removed unnecessary files.

• (#97) Added sections to documentation file so that newer crunchers and multiple infillers are included.

• (#95) Added sections to notebooks covering all the recent changes.

• (#94) Added EqualQuantileWalk, a cruncher which finds the quantile of the lead variable in the infiller
database and returns the same quantile of the follow variable.

• (#87) Added TimeDepQuantileRollingWindows, a cruncher which allows the user to crunch different quan-
tiles in different years.

• (#86) Slightly changed the definition of quantile rolling windows to make it symmetric (not rounding down).

• (#83) Added tests for appending results of crunching to the input.

• (#82) Updated to a later version of pyam and solved todos associated with this. Also added a kwargs argument
to infill_all_required.

9.6. [v1.0.1] - 27 Oct 2020 41

https://github.com/GranthamImperial/silicone/pull/123
https://github.com/GranthamImperial/silicone/pull/115
https://github.com/GranthamImperial/silicone/pull/119
https://github.com/GranthamImperial/silicone/pull/116
https://github.com/GranthamImperial/silicone/pull/113
https://github.com/GranthamImperial/silicone/pull/112
https://github.com/GranthamImperial/silicone/pull/111
https://github.com/GranthamImperial/silicone/pull/110
https://github.com/GranthamImperial/silicone/pull/108
https://github.com/GranthamImperial/silicone/pull/103
https://github.com/GranthamImperial/silicone/pull/101
https://github.com/GranthamImperial/silicone/pull/93
https://github.com/GranthamImperial/silicone/pull/102
https://github.com/GranthamImperial/silicone/pull/100
https://github.com/GranthamImperial/silicone/pull/97
https://github.com/GranthamImperial/silicone/pull/95
https://github.com/GranthamImperial/silicone/pull/94
https://github.com/GranthamImperial/silicone/pull/87
https://github.com/GranthamImperial/silicone/pull/86
https://github.com/GranthamImperial/silicone/pull/83
https://github.com/GranthamImperial/silicone/pull/82

Silicone Documentation, Release 1.3.0

• (#80) Changed the names of crunchers for brevity. Also changed lead_gas to latest_time_ratio and in-
cluded it in ratio notebook.

• (#78) Changed how quantile rolling windows works by adding an extra interpolate step for smoothness

• (#77) Added calculation of variance of rank correlation to stats

• (#76) Removed command-line interface

• (#75) Updated README

• (#72) Altered infill_composite_value to allow multiplication by a factor before summing. Removed unnecessary
notebooks.

• (#69) Fixed bug so that DatabaseCruncherRMSClosest no longer selects scenarios which don’t have follower
data

• (#68) More investigatory tools and scripts for calculating and outputting emissions correlations.

• (#67) Introduce investigatory tools for plotting relations between emissions.

• (#66) Remove Input folder in favour of using openscm-units

• (#65) Add format-notebooks target to the Makefile

• (#64) Add basic linters to CI

• (#61) Switch to using GitHub actions for CI

• (#60) Update installation docs to reference pip and conda

• (#62) Minor changes to remove warning messages and remove some todos.

• (#52) Made the Lead Gas infiller use the average latest data rather than being restricted to a single value. Updated
infill_composite_values to work with the latest data.

• (#51) Split the notebooks into chapters with minor changes to the text. Moved a script function into utilities to
download data.

• (#49) Rewrote the documentation and notebooks to update, split up information and clarify.

• (#48) Introduced multiple_infiller function to calculate the composite values from the constituents.

• (#47) Made an option for quantile_rolling_windows to infill using the ratio of lead to follow data.

• (#46) Made the time-dependent ratio infiller only use data where the leader has the same sign.

• (#45) Made infill_all_required_emissions_for_openscm, the second multiple-infiller function.

• (#44) Made decompose_collection_with_time_dep_ratio, the first multiple-infiller function.

• (#43) Implemented new util functions for downloading data, unit conversion and data checking.

• (#41) Added a cruncher to interpolate values between data from specific scenarios. Only test notebooks with lax
option.

• (#32) Raise ValueError when asking to infill a case with no data

• (#27) Developed the constant ratio cruncher

• (#21) Developed the time-dependent ratio cruncher

• (#20) Clean up the quantiles cruncher and test rigorously

• (#19) Add releasing docs plus command-line entry point tests

• (#14) Add root-mean square closest pathway cruncher

• (#13) Get initial work (see #11) into package structure, still requires tests (see #16)

42 Chapter 9. Changelog

https://github.com/GranthamImperial/silicone/pull/80
https://github.com/GranthamImperial/silicone/pull/78
https://github.com/GranthamImperial/silicone/pull/77
https://github.com/GranthamImperial/silicone/pull/76
https://github.com/GranthamImperial/silicone/pull/75
https://github.com/GranthamImperial/silicone/pull/72
https://github.com/GranthamImperial/silicone/pull/69
https://github.com/GranthamImperial/silicone/pull/68
https://github.com/GranthamImperial/silicone/pull/67
https://github.com/GranthamImperial/silicone/pull/66
https://github.com/GranthamImperial/silicone/pull/65
https://github.com/GranthamImperial/silicone/pull/64
https://github.com/GranthamImperial/silicone/pull/61
https://github.com/GranthamImperial/silicone/pull/60
https://github.com/GranthamImperial/silicone/pull/62
https://github.com/GranthamImperial/silicone/pull/52
https://github.com/GranthamImperial/silicone/pull/51
https://github.com/GranthamImperial/silicone/pull/49
https://github.com/GranthamImperial/silicone/pull/48
https://github.com/GranthamImperial/silicone/pull/47
https://github.com/GranthamImperial/silicone/pull/46
https://github.com/GranthamImperial/silicone/pull/45
https://github.com/GranthamImperial/silicone/pull/44
https://github.com/GranthamImperial/silicone/pull/43
https://github.com/GranthamImperial/silicone/pull/41
https://github.com/GranthamImperial/silicone/pull/32
https://github.com/GranthamImperial/silicone/pull/27
https://github.com/GranthamImperial/silicone/pull/21
https://github.com/GranthamImperial/silicone/pull/20
https://github.com/GranthamImperial/silicone/pull/19
https://github.com/GranthamImperial/silicone/pull/14
https://github.com/GranthamImperial/silicone/pull/13
https://github.com/GranthamImperial/silicone/pull/11
https://github.com/GranthamImperial/silicone/pull/16

Silicone Documentation, Release 1.3.0

• (#12) Add BSD-3-Clause license

• (#9) Add lead gas cruncher

• (#6) Update development docs

• (#5) Put notebooks under CI

• (#4) Add basic documentation structure

• (#1) Added pull request and issues templates

9.7. [v1.0.0] - 9 Sept 2020 43

https://github.com/GranthamImperial/silicone/pull/12
https://github.com/GranthamImperial/silicone/pull/9
https://github.com/GranthamImperial/silicone/pull/6
https://github.com/GranthamImperial/silicone/pull/5
https://github.com/GranthamImperial/silicone/pull/4
https://github.com/GranthamImperial/silicone/pull/1

Silicone Documentation, Release 1.3.0

44 Chapter 9. Changelog

CHAPTER

TEN

INDEX

• genindex

• modindex

• search

45

Silicone Documentation, Release 1.3.0

46 Chapter 10. Index

PYTHON MODULE INDEX

s
silicone.database_crunchers, 13
silicone.database_crunchers.constant_ratio,

14
silicone.database_crunchers.equal_quantile_walk,

15
silicone.database_crunchers.interpolate_specified_scenarios_and_models,

16
silicone.database_crunchers.latest_time_ratio,

16
silicone.database_crunchers.linear_interpolation,

17
silicone.database_crunchers.quantile_rolling_windows,

18
silicone.database_crunchers.rms_closest, 13
silicone.database_crunchers.time_dep_quantile_rolling_windows,

20
silicone.database_crunchers.time_dep_ratio,

21
silicone.multiple_infillers, 23
silicone.multiple_infillers.decompose_collection_with_time_dep_ratio,

23
silicone.multiple_infillers.infill_all_required_emissions_for_openscm,

24
silicone.multiple_infillers.infill_composite_values,

25
silicone.stats, 31
silicone.time_projectors, 27
silicone.time_projectors.extend_latest_time_quantile,

27
silicone.time_projectors.extend_rms_closest,

28
silicone.time_projectors.linear_extender, 28
silicone.utils, 35

47

Silicone Documentation, Release 1.3.0

48 Python Module Index

INDEX

C
calc_all_emissions_correlations() (in module

silicone.stats), 31
calc_quantiles_of_data() (in module silicone.stats),

31
ConstantRatio (class in sili-

cone.database_crunchers.constant_ratio),
14

convert_units_to_MtCO2_equiv() (in module sili-
cone.utils), 35

D
DecomposeCollectionTimeDepRatio (class in sili-

cone.multiple_infillers.decompose_collection_with_time_dep_ratio),
23

derive_relationship() (sili-
cone.database_crunchers.constant_ratio.ConstantRatio
method), 14

derive_relationship() (sili-
cone.database_crunchers.equal_quantile_walk.EqualQuantileWalk
method), 15

derive_relationship() (sili-
cone.database_crunchers.interpolate_specified_scenarios_and_models.ScenarioAndModelSpecificInterpolate
method), 16

derive_relationship() (sili-
cone.database_crunchers.latest_time_ratio.LatestTimeRatio
method), 17

derive_relationship() (sili-
cone.database_crunchers.linear_interpolation.LinearInterpolation
method), 18

derive_relationship() (sili-
cone.database_crunchers.quantile_rolling_windows.QuantileRollingWindows
method), 19

derive_relationship() (sili-
cone.database_crunchers.rms_closest.RMSClosest
method), 13

derive_relationship() (sili-
cone.database_crunchers.time_dep_quantile_rolling_windows.TimeDepQuantileRollingWindows
method), 20

derive_relationship() (sili-
cone.database_crunchers.time_dep_ratio.TimeDepRatio
method), 21

derive_relationship() (sili-
cone.time_projectors.extend_latest_time_quantile.ExtendLatestTimeQuantile
method), 27

derive_relationship() (sili-
cone.time_projectors.extend_rms_closest.ExtendRMSClosest
method), 28

derive_relationship() (sili-
cone.time_projectors.linear_extender.LinearExtender
method), 28

download_or_load_sr15() (in module silicone.utils),
35

E
EqualQuantileWalk (class in sili-

cone.database_crunchers.equal_quantile_walk),
15

ExtendLatestTimeQuantile (class in sili-
cone.time_projectors.extend_latest_time_quantile),
27

ExtendRMSClosest (class in sili-
cone.time_projectors.extend_rms_closest),
28

F
find_matching_scenarios() (in module sili-

cone.utils), 35

G
get_sr15_scenarios() (in module silicone.utils), 36

I
infill_all_required_variables() (in module sili-

cone.multiple_infillers.infill_all_required_emissions_for_openscm),
24

infill_components() (sili-
cone.multiple_infillers.decompose_collection_with_time_dep_ratio.DecomposeCollectionTimeDepRatio
method), 23

infill_composite_values() (in module sili-
cone.multiple_infillers.infill_composite_values),
25

49

Silicone Documentation, Release 1.3.0

L
LatestTimeRatio (class in sili-

cone.database_crunchers.latest_time_ratio),
16

LinearExtender (class in sili-
cone.time_projectors.linear_extender), 28

LinearInterpolation (class in sili-
cone.database_crunchers.linear_interpolation),
17

M
module

silicone.database_crunchers, 13
silicone.database_crunchers.constant_ratio,

14
silicone.database_crunchers.equal_quantile_walk,

15
silicone.database_crunchers.interpolate_specified_scenarios_and_models,

16
silicone.database_crunchers.latest_time_ratio,

16
silicone.database_crunchers.linear_interpolation,

17
silicone.database_crunchers.quantile_rolling_windows,

18
silicone.database_crunchers.rms_closest,

13
silicone.database_crunchers.time_dep_quantile_rolling_windows,

20
silicone.database_crunchers.time_dep_ratio,

21
silicone.multiple_infillers, 23
silicone.multiple_infillers.decompose_collection_with_time_dep_ratio,

23
silicone.multiple_infillers.infill_all_required_emissions_for_openscm,

24
silicone.multiple_infillers.infill_composite_values,

25
silicone.stats, 31
silicone.time_projectors, 27
silicone.time_projectors.extend_latest_time_quantile,

27
silicone.time_projectors.extend_rms_closest,

28
silicone.time_projectors.linear_extender,

28
silicone.utils, 35

Q
QuantileRollingWindows (class in sili-

cone.database_crunchers.quantile_rolling_windows),
18

R
return_cases_which_consistently_split() (in

module silicone.utils), 36
RMSClosest (class in sili-

cone.database_crunchers.rms_closest), 13
rolling_window_find_quantiles() (in module sili-

cone.stats), 32

S
ScenarioAndModelSpecificInterpolate

(class in sili-
cone.database_crunchers.interpolate_specified_scenarios_and_models),
16

silicone.database_crunchers
module, 13

silicone.database_crunchers.constant_ratio
module, 14

silicone.database_crunchers.equal_quantile_walk
module, 15

silicone.database_crunchers.interpolate_specified_scenarios_and_models
module, 16

silicone.database_crunchers.latest_time_ratio
module, 16

silicone.database_crunchers.linear_interpolation
module, 17

silicone.database_crunchers.quantile_rolling_windows
module, 18

silicone.database_crunchers.rms_closest
module, 13

silicone.database_crunchers.time_dep_quantile_rolling_windows
module, 20

silicone.database_crunchers.time_dep_ratio
module, 21

silicone.multiple_infillers
module, 23

silicone.multiple_infillers.decompose_collection_with_time_dep_ratio
module, 23

silicone.multiple_infillers.infill_all_required_emissions_for_openscm
module, 24

silicone.multiple_infillers.infill_composite_values
module, 25

silicone.stats
module, 31

silicone.time_projectors
module, 27

silicone.time_projectors.extend_latest_time_quantile
module, 27

silicone.time_projectors.extend_rms_closest
module, 28

silicone.time_projectors.linear_extender
module, 28

silicone.utils
module, 35

50 Index

Silicone Documentation, Release 1.3.0

T
TimeDepQuantileRollingWindows (class in sili-

cone.database_crunchers.time_dep_quantile_rolling_windows),
20

TimeDepRatio (class in sili-
cone.database_crunchers.time_dep_ratio),
21

Index 51

	Installation
	Usage
	Development
	Contributing
	Getting setup
	Getting help
	Development tools
	Other tools

	Formatting
	Buiding the docs
	Gotchas
	Docstring style

	Releasing
	First step
	Hitting the button

	Why is there a Makefile in a pure Python repository?

	Database crunchers API
	Closest RMS cruncher API
	Constant ratio cruncher API
	Equal quantile walk cruncher API
	Interpolate specified scenarios and models cruncher API
	Latest Time Ratio API
	Linear interpolation cruncher API
	Quantile rolling windows cruncher API
	Time dependent quantile rolling windows cruncher API
	Time dependent ratio cruncher API

	Multiple infillers API
	Decompose collection with time-dependent ratio API
	Infill all required emissions for openscm API
	Infill composite values API

	Time projectors API
	Extend latest time quantile
	Extend RMS closest
	Linear extender

	Stats API
	Utils API
	Changelog
	[v1.3.0] - 14 Oct 2022
	Added
	Changed
	Fixed

	[v1.2.0] - 28 Sept 2021
	Added
	Changed

	[v1.1.0] - 12 July 2021
	Added
	Changed
	Fixed

	[v1.0.3]
	Changed

	[v1.0.2] - 4 Jan 2021
	Changed
	Fixed

	[v1.0.1] - 27 Oct 2020
	Added
	Changed

	[v1.0.0] - 9 Sept 2020
	Initial release

	Index
	Python Module Index
	Index

