

Silicone

Silicone is a Python package which can be used to infer emissions from other emissions data.
It is intended to ‘infill’ integrated assessment model (IAM) data so that their scenarios
quantify more climate-relevant emissions than are natively reported by the IAMs themselves.
It does this by comparing the incomplete emissions set to complete data from other sources.
It uses the relationships within the complete data to make informed infilling estimates of
otherwise missing emissions timeseries.
For example, it can add emissions of aerosol precurors based on carbon dioxide emissions
and infill nitrous oxide emissions based on methane, or split HFC emissions pathways into
emissions of different specific HFC gases.

Silicone is free software under a BSD 3-Clause License, see
LICENSE [https://github.com/GranthamImperial/silicone/blob/master/LICENSE].

Documentation

	Installation

	Usage

	Development
	Contributing

	Getting setup

	Formatting

	Buiding the docs

	Releasing

	Why is there a Makefile in a pure Python repository?

API reference

	Database crunchers API
	Closest RMS cruncher API

	Constant ratio cruncher API

	Equal quantile walk cruncher API

	Interpolate specified scenarios and models cruncher API

	Latest Time Ratio API

	Linear interpolation cruncher API

	Quantile rolling windows cruncher API

	Time dependent quantile rolling windows cruncher API

	Time dependent ratio cruncher API

	Multiple infillers API
	Decompose collection with time-dependent ratio API

	Infill all required emissions for openscm API

	Infill composite values API

	Time projectors API
	Extend latest time quantile

	Extend RMS closest

	Linear extender

	Stats API
	calc_all_emissions_correlations()

	calc_quantiles_of_data()

	rolling_window_find_quantiles()

	Utils API
	convert_units_to_MtCO2_equiv()

	download_or_load_sr15()

	find_matching_scenarios()

	get_sr15_scenarios()

	return_cases_which_consistently_split()

Versions

	Changelog
	[v1.3.0] - 14 Oct 2022

	[v1.2.0] - 28 Sept 2021

	[v1.1.0] - 12 July 2021

	[v1.0.3]

	[v1.0.2] - 4 Jan 2021

	[v1.0.1] - 27 Oct 2020

	[v1.0.0] - 9 Sept 2020

Index

	Index

	Module Index

	Search Page

Installation

Silicone can be installed with pip

pip install silicone

If you also want to run the example notebooks, install additional
dependencies using

pip install silicone[notebooks]

Coming soon Silicone can also be installed with conda

conda install -c conda-forge silicone

Usage

All of our usage examples are included in silicone/notebooks.

Development

If you’re interested in contributing to Silicone, we’d love to have you on board!
This section of the docs will (once we’ve written it) detail how to get setup to contribute and how best to communicate.

	Contributing

	Getting setup

	Getting help

	Development tools

	Other tools

	Formatting

	Buiding the docs

	Gotchas

	Docstring style

	Releasing

	First step

	Hitting the button

	Why is there a Makefile in a pure Python repository?

Contributing

All contributions are welcome, some possible suggestions include:

	tutorials (or support questions which, once solved, result in a new tutorial :D)

	blog posts

	improving the documentation

	bug reports

	feature requests

	pull requests

Please report issues or discuss feature requests in the Silicone issue tracker [https://github.com/GranthamImperial/silicone/issues].
If your issue is a feature request or a bug, please use the templates available, otherwise, simply open a normal issue :)

As a contributor, please follow a couple of conventions:

	Create issues in the Silicone issue tracker [https://github.com/GranthamImperial/silicone/issues] for changes and enhancements, this ensures that everyone in the community has a chance to comment

	Be welcoming to newcomers and encourage diverse new contributors from all backgrounds: see the Python Community Code of Conduct [https://www.python.org/psf/codeofconduct/]

	Only push to your own branches, this allows people to force push to their own branches as they need without fear or causing others headaches

	Start all pull requests as draft pull requests and only mark them as ready for review once they’ve been rebased onto master, this makes it much simpler for reviewers

	Try and make lots of small pull requests, this makes it easier for reviewers and faster for everyone as review time grows exponentially with the number of lines in a pull request

Getting setup

To get setup as a developer, we recommend the following steps (if any of these tools are unfamiliar, please see the resources we recommend in Development tools):

	Install conda and make

	Run make virtual-environment, if that fails you can try doing it manually

	Change your current directory to Silicone’s root directory (i.e. the one which contains README.rst), cd silicone

	Create a virtual environment to use with Silicone python3 -m venv venv

	Activate your virtual environment source ./venv/bin/activate

	Upgrade pip pip intall --upgrade pip

	Install the development dependencies (very important, make sure your virtual environment is active before doing this) pip install -e .[dev]

	Make sure the tests pass by running make test-all, if that fails the commands are

	Activate your virtual environment source ./venv/bin/activate

	Run the unit and integration tests pytest --cov -r a --cov-report term-missing

	Test the notebooks pytest -r a --nbval ./notebooks --sanitize ./notebooks/tests_sanitize.cfg

Getting help

Whilst developing, unexpected things can go wrong (that’s why it’s called ‘developing’, if we knew what we were doing, it would already be ‘developed’).
Normally, the fastest way to solve an issue is to contact us via the issue tracker [https://github.com/GranthamImperial/silicone/issues].
The other option is to debug yourself.
For this purpose, we provide a list of the tools we use during our development as starting points for your search to find what has gone wrong.

Development tools

This list of development tools is what we rely on to develop Silicone reliably and reproducibly.
It gives you a few starting points in case things do go inexplicably wrong and you want to work out why.
We include links with each of these tools to starting points that we think are useful, in case you want to learn more.

	Git [http://swcarpentry.github.io/git-novice/]

	Make [https://swcarpentry.github.io/make-novice/]

	Conda virtual environments [https://medium.freecodecamp.org/why-you-need-python-environments-and-how-to-manage-them-with-conda-85f155f4353c]

	Pip and pip virtual environments [https://www.dabapps.com/blog/introduction-to-pip-and-virtualenv-python/]

	Tests [https://semaphoreci.com/community/tutorials/testing-python-applications-with-pytest]

	we use a blend of pytest [https://docs.pytest.org/en/latest/] and the inbuilt Python testing capabilities for our tests so checkout what we’ve already done in tests to get a feel for how it works

	Continuous integration (CI) [https://docs.travis-ci.com/user/for-beginners/]

	we use Travis CI [https://travis-ci.com/] for our CI but there are a number of good providers

	Jupyter Notebooks [https://medium.com/codingthesmartway-com-blog/getting-started-with-jupyter-notebook-for-python-4e7082bd5d46]

	Jupyter is automatically included in your virtual environment if you follow our Getting setup instructions

	Sphinx [http://www.sphinx-doc.org/en/master/]

Other tools

We also use some other tools which aren’t necessarily the most familiar.
Here we provide a list of these along with useful resources.

	Regular expressions [https://www.oreilly.com/ideas/an-introduction-to-regular-expressions]

	we use regex101.com to help us write and check our regular expressions, make sure the language is set to Python to make your life easy!

Formatting

To help us focus on what the code does, not how it looks, we use a couple of automatic formatting tools.
These automatically format the code for us and tell use where the errors are.
To use them, after setting yourself up (see Getting setup), simply run make format.
Note that make format can only be run if you have committed all your work i.e. your working directory is ‘clean’.
This restriction is made to ensure that you don’t format code without being able to undo it, just in case something goes wrong.

Buiding the docs

After setting yourself up (see Getting setup), building the docs is as simple as running make docs (note, run make -B docs to force the docs to rebuild and ignore make when it says ‘… index.html is up to date’).
This will build the docs for you.
You can preview them by opening docs/build/html/index.html in a browser.

For documentation we use Sphinx [http://www.sphinx-doc.org/en/master/].
To get ourselves started with Sphinx, we started with this example [https://pythonhosted.org/an_example_pypi_project/sphinx.html] then used Sphinx’s getting started guide [http://www.sphinx-doc.org/en/master/usage/quickstart.html].

Gotchas

To get Sphinx to generate pdfs (rarely worth the hassle), you require Latexmk [https://mg.readthedocs.io/latexmk.html].
On a Mac this can be installed with sudo tlmgr install latexmk.
You will most likely also need to install some other packages (if you don’t have the full distribution).
You can check which package contains any missing files with tlmgr search --global --file [filename].
You can then install the packages with sudo tlmgr install [package].

Docstring style

For our docstrings we use numpy style docstrings.
For more information on these, here is the full guide [https://numpydoc.readthedocs.io/en/latest/format.html] and the quick reference we also use [https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html].

Releasing

First step

	Test installation with dependencies make test-install

	Update CHANGELOG.rst

	add a header for the new version between master and the latest bullet point

	this should leave the section underneath the master header empty

	git add .

	git commit -m "Release vX.Y.Z"

	git tag vX.Y.Z

	Test version updated as intended with make test-install

Hitting the button

Our releases are handled automatically as part of our CI-CD pipeline.
Hence all that needs to be done now is simply push to the repository, this will trigger an automatic release to PyPI.

	git push

	git push --tags

If the pipeline fails, one of the developers will receive a notification (and the reasons can then be debugged).
If the pipeline passes, it’s worth going to Silicone’s PyPI [https://pypi.org/project/silicone/] and checking that the new release is as intended.
You can also check that a fresh install would install the released version using make test-pypi-install.

Why is there a Makefile in a pure Python repository?

Whilst it may not be standard practice, a Makefile is a simple way to automate general setup (environment setup in particular).
Hence we have one here which basically acts as a notes file for how to do all those little jobs which we often forget e.g. setting up environments, running tests (and making sure we’re in the right environment), building docs, setting up auxillary bits and pieces.

Database crunchers API

Database crunchers.

The classes within this module can be used to crunch a database of scenarios. Each
‘Cruncher’ has methods which return functions which can then be used to infill
emissions detail (i.e. calculate ‘follower’ timeseries) based on ‘lead’ emissions
timeseries.

Closest RMS cruncher API

Module for the database cruncher which uses the ‘closest RMS’ technique.

	
class silicone.database_crunchers.rms_closest.RMSClosest(db)

	Bases: _DatabaseCruncher

Database cruncher which uses the ‘closest RMS’ technkque.

This cruncher derives the relationship between two or more variables by finding the
scenario which has the most similar timeseries for the lead gases in the database.
The follower gas timeseries is then simply copied from the closest scenario.

Here, ‘most similar’ is defined as the smallest time-averaged root mean squared (L2)
difference. If multiple lead values are used, they may be weighted differently to
account for differences between the reported units. The most similar model/scenario
combination minimises

\[RMS error = \sum_l w_l \left (\frac{1}{n} \sum_{t=0}^n (E_l(t) - e_l(t))^2 \right)^{1/2}\]

where \(l\) is a lead gas, \(w_l\) is a weighting for that lead gas,
\(n\) is the total number of timesteps in all lead gas timeseries,
\(E_l(t)\) is the lead gas emissions timeseries and \(e_l(t)\) is a lead
gas emissions timeseries in the infiller database.

	
derive_relationship(variable_follower, variable_leaders, weighting=None)

	Derive the relationship between the lead and the follow variables from the
database.

	Parameters

	
	variable_follower (str [https://docs.python.org/3/library/stdtypes.html#str]) – The variable for which we want to calculate timeseries (e.g.
"Emissions|C5F12").

	variable_leaders (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The variable we want to use in order to infer timeseries of
variable_follower (e.g. ["Emissions|CO2"]). This may contain
multiple elements.

	weighting (dict{str: float}) – When used with multiple lead variables, this weighting factor controls the
relative importance of different variables for determining closeness. E.g.
if wanting to compare both CO2 and CH4 emissions reported in mass
units but weighted by the AR5 GWP100 metric, this would be
{“Emissions|CO2”: 1, “Emissions|CH4”: 28}.

	Returns

	Function which takes a pyam.IamDataFrame [https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame] containing
variable_leaders timeseries and returns timeseries for
variable_follower based on the derived relationship between the two.
Please see the source code for the exact definition (and docstring) of the
returned function.

	Return type

	func

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – variable_leaders contains more than one variable.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – There is no data for variable_leaders or variable_follower in the
 database.

Constant ratio cruncher API

Module for the database cruncher which uses the ‘constant given ratio’ technique.

	
class silicone.database_crunchers.constant_ratio.ConstantRatio(db=None)

	Bases: _DatabaseCruncher

Database cruncher which uses the ‘constant given ratio’ technique.

This cruncher does not require a database upon initialisation. Instead, it requires
a constant and a unit to be input when deriving relations. This constant,
\(s\), is the ratio of the follower variable to the lead variable i.e.:

\[E_f(t) = s * E_l(t)\]

where \(E_f(t)\) is emissions of the follower variable and \(E_l(t)\) is
emissions of the lead variable.

	
derive_relationship(variable_follower, variable_leaders, ratio, units)

	Derive the relationship between two variables from the database.

	Parameters

	
	variable_follower (str [https://docs.python.org/3/library/stdtypes.html#str]) – The variable for which we want to calculate timeseries (e.g.
"Emissions|C5F12").

	variable_leaders (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The variable we want to use in order to infer timeseries of
variable_follower (e.g. ["Emissions|CO2"]).

	ratio (float [https://docs.python.org/3/library/functions.html#float]) – The ratio between the leader and the follower data

	units (str [https://docs.python.org/3/library/stdtypes.html#str]) – The units of the follower data.

	Returns

	Function which takes a pyam.IamDataFrame [https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame] containing
variable_leaders timeseries and returns timeseries for
variable_follower based on the derived relationship between the two.

	Return type

	func

Equal quantile walk cruncher API

Module for the database cruncher which uses the ‘equal quantile walk’ technique.

	
class silicone.database_crunchers.equal_quantile_walk.EqualQuantileWalk(db)

	Bases: _DatabaseCruncher

Database cruncher which uses the ‘equal quantile walk’ technique.

This cruncher assumes that the amount of effort going into reducing one emission set
is equal to that for another emission, therefore the lead and follow data should be
at the same quantile of all pathways in the infiller database.
It calculates the quantile of the lead infillee data in the lead infiller database,
then outputs that quantile of the follow data in the infiller database.

	
derive_relationship(variable_follower, variable_leaders, smoothing=None, weighting=None)

	Derive the relationship between two variables from the database.

	Parameters

	
	variable_follower (str [https://docs.python.org/3/library/stdtypes.html#str]) – The variable for which we want to calculate timeseries (e.g.
"Emissions|C5F12").

	variable_leaders (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The variable we want to use in order to infer timeseries of
variable_follower (e.g. ["Emissions|CO2"]).

	smoothing (float [https://docs.python.org/3/library/functions.html#float] or string) – By default, no smoothing is done on the distribution. If a value is
provided, it is fed into scipy.stats.gaussian_kde() - see full
documentation there. In short, if a float is input, we fit a Gaussian kernel
density estimator with that width to the points. If a string is used, it
must be either “scott” or “silverman”, after those two methods of
determining the best kernel bandwidth.

	weighting (Dict{(str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]) : float}) – The dictionary, mapping the (mode, scenario) tuple onto the weight (relative
to a weight of 1 for the default). This does not have to include all scenarios
in df, but cannot include scenarios not in df.

	Returns

	Function which takes a pyam.IamDataFrame [https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame] containing
variable_leaders timeseries and returns timeseries for
variable_follower based on the derived relationship between the two.
Please see the source code for the exact definition (and docstring) of the
returned function.

	Return type

	func

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – variable_leaders contains more than one variable.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – There is no data for variable_leaders or variable_follower in the
 database.

Interpolate specified scenarios and models cruncher API

	
class silicone.database_crunchers.interpolate_specified_scenarios_and_models.ScenarioAndModelSpecificInterpolate(db)

	Bases: _DatabaseCruncher

Database cruncher which pre-filters to only use data from specific scenarios, then
runs the interpolation cruncher to return values from that set of scenarios. See the
documentation of Interpolation for more details.

	
derive_relationship(variable_follower, variable_leaders, required_scenario='*', required_model='*', interpkind='linear')

	Derive the relationship between two variables from the database.

	Parameters

	
	variable_follower (str [https://docs.python.org/3/library/stdtypes.html#str]) – The variable for which we want to calculate timeseries (e.g.
"Emissions|CH4").

	variable_leaders (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The variable(s) we want to use in order to infer timeseries of
variable_follower (e.g. ["Emissions|CO2"]).

	required_scenario (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The string(s) which all relevant scenarios are required to match. This may
have s to represent wild cards. It defaults to “” to accept all scenarios.

	required_model (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The string(s) which all relevant models are required to match. This may have
s to represent wild cards. It defaults to “” to accept all models.

	interpkind (str [https://docs.python.org/3/library/stdtypes.html#str]) – The style of interpolation. By default, linear, but can
also be any value accepted as the “kind” option in
scipy.interpolate.interp1d, or “PchipInterpolator”, in which case
scipy.interpolate.PchipInterpolator is used. Care should be taken if using
non-default interp1d options, as they are either uneven or have “ringing”

	Returns

	Function which takes a pyam.IamDataFrame [https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame] containing
variable_leaders timeseries and returns timeseries for
variable_follower based on the derived relationship between the two.
Please see the source code for the exact definition (and docstring) of the
returned function.

	Return type

	func

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – There is no data of the appropriate type in the database.
 There may be a typo in the SSP option.

Latest Time Ratio API

Module for the database cruncher which uses the ‘latest time ratio’ technique.

	
class silicone.database_crunchers.latest_time_ratio.LatestTimeRatio(db)

	Bases: _DatabaseCruncher

Database cruncher which uses the ‘latest time ratio’ technique.

This cruncher derives the relationship between two variables by simply assuming
that the follower timeseries is equal to the lead timeseries multiplied by a
scaling factor. The scaling factor is derived by calculating the ratio of the
follower variable to the lead variable in the latest year in which the follower
variable is available in the database. Additionally, since
the derived relationship only depends on a single point in the database, no
regressions or other calculations are performed.

Once the relationship is derived, the ‘filler’ function will infill following:

\[E_f(t) = R * E_l(t)\]

where \(E_f(t)\) is emissions of the follower variable and \(E_l(t)\) is
emissions of the lead variable, both in the infillee database.

\(R\) is the scaling factor, calculated as

\[R = \frac{ E_f(t_{\text{last}}) }{ e_l(t_{\text{last}}) }\]

where \(t_{\text{last}}\) is the average of all values of the follower gas at
the latest time it appears in the database, and the lower case \(e\) represents
the infiller database.

	
derive_relationship(variable_follower, variable_leaders)

	Derive the relationship between two variables from the database.

	Parameters

	
	variable_follower (str [https://docs.python.org/3/library/stdtypes.html#str]) – The variable for which we want to calculate timeseries (e.g.
"Emissions|C5F12").

	variable_leaders (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The variable we want to use in order to infer timeseries of
variable_follower (e.g. ["Emissions|CO2"]). Note that the ‘latest
time ratio’ methodology gives the same result, independent of the value of
variable_leaders in the database.

	Returns

	Function which takes a pyam.IamDataFrame [https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame] containing
variable_leaders timeseries and returns timeseries for
variable_follower based on the derived relationship between the two.
Please see the source code for the exact definition (and docstring) of the
returned function.

	Return type

	func

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – variable_leaders contains more than one variable.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – There is no data for variable_leaders or variable_follower in the
 database.

Linear interpolation cruncher API

Module for the database cruncher which makes a linear interpolator between known values

	
class silicone.database_crunchers.linear_interpolation.LinearInterpolation(db)

	Bases: Interpolation

Database cruncher which uses linear interpolation. This cruncher is deprecated; use
Interpolation instead.

This cruncher derives the relationship between two variables by linearly
interpolating between values in the cruncher database. It does not do any
smoothing and is best-suited for smaller databases.

In the case where there is more than one value of the follower variable for a
given value of the leader variable, the average will be used. For example, if
one scenario has CH4 emissions of 10 MtCH4/yr whilst another has CH4
emissions of 20 MtCH4/yr in 2020 whilst both scenarios have CO2 emissions
of exactly 15 GtC/yr in 2020, the interpolation will use the average value from the
two scenarios i.e. 15 Mt CH4/yr.

Beyond the bounds of input data, the interpolation is held constant.
For example, if the maximum CO2 emissions in 2020 in the database is
25 GtC/yr, and CH4 emissions for this level of CO2 emissions are 15 MtCH4/yr,
then even if we infill using a CO2 emissions value of 100 GtC/yr in 2020, the
returned CH4 emissions will be 15 MtCH4/yr.

	
derive_relationship(variable_follower, variable_leaders)

	Derive the relationship between two variables from the database.

	Parameters

	
	variable_follower (str [https://docs.python.org/3/library/stdtypes.html#str]) – The variable for which we want to calculate timeseries (e.g.
"Emissions|CH4").

	variable_leaders (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The variable(s) we want to use in order to infer timeseries of
variable_follower (e.g. ["Emissions|CO2"]).

	interpkind (str [https://docs.python.org/3/library/stdtypes.html#str]) – The style of interpolation. By default, linear (hence the name), but can
also be any value accepted as the “kind” option in
scipy.interpolate.interp1d.

	Returns

	Function which takes a pyam.IamDataFrame [https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame] containing
variable_leaders timeseries and returns timeseries for
variable_follower based on the derived relationship between the two.
Please see the source code for the exact definition (and docstring) of the
returned function.

	Return type

	func

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – There is no data of the appropriate type in the database.

Quantile rolling windows cruncher API

Module for the database cruncher which uses the ‘rolling windows’ technique.

	
class silicone.database_crunchers.quantile_rolling_windows.QuantileRollingWindows(db)

	Bases: _DatabaseCruncher

Database cruncher which uses the ‘rolling windows’ technique.

This cruncher derives the relationship between two variables by performing
quantile calculations between the follower timeseries and the lead timeseries.
These calculations are performed at each timestep in the timeseries, independent
of the other timesteps.

For each timestep, the lead timeseries axis is divided into multiple evenly spaced
windows (to date this is only tested on 1:1 relationships but may work with more
than one lead timeseries). In each window, every data point in the database is
included. However, the data points receive a weight given by

\[w(x, x_{\text{window}}) = \frac{1}{1 + (d_n)^2}\]

where \(w\) is the weight and \(d_n\) is the normalised distance between
the centre of the window and the data point’s position on the lead timeseries axis.

\(d_n\) is calculated as

\[d_n = \frac{x - x_{\text{window}}}{f \times (\frac{b}{2})}\]

where \(x\) is the position of the data point on the lead timeseries axis,
\(x_{\text{window}}\) is the position of the centre of the window on the lead
timeseries axis, \(b\) is the distance between window centres and \(f\) is
a decay factor which controls how much less points away from
\(x_{\text{window}}\) are weighted.
If \(f=1\) then a point which is half the width between window centres away
receives a weighting of \(1/2\). Lowering the value of \(f\) cause points
further from the window centre to receive less weight.

With these weightings, the desired quantile of the data is then calculated. This
calculation is done by sorting the data by the database’s follow timeseries values
(then by lead timeseries values in the case of identical follow values). From here,
the weight of each point is calculated following the formula given above.
We calculate the cumulative sum of weights, and then the cumulative sum up to half
weights, defined by

\[c_{hw} = c_w - 0.5 \times w\]

where \(c_w\) is the cumulative weights and \(w\) is the raw weights. This
ensures that quantiles less than half the weight of the smallest follow value return
the smallest follow value and more than one minus half the weight of the largest
follow value return the largest value. Without such a shift, the largest value is
only returned if the quantile is 1, leading to a bias towards smaller values.

With these calculations, we have determined the relationship between the follow
timeseries values and the quantile i.e. cumulative sum of (normalised) weights. We
can then determine arbitrary quantiles by linearly interpolating.

If the option use_ratio is set to True, instead of returning the absolute
value of the follow at this quantile, we return the quantile of the ratio between
the lead and follow data in the database, multiplied by the actual lead value of the
database being infilled.

By varying the quantile, this cruncher can provide ranges of the relationship
between different variables. For example, it can provide the 90th percentile (i.e.
high end) of the relationship between e.g. Emissions|CH4 and Emissions|CO2
or the 50th percentile (i.e. median) or any other arbitrary percentile/quantile
choice. Note that the impact of this will strongly depend on nwindows and
decay_length_factor. Using the TimeDepQuantileRollingWindows class makes
it is possible to specify a dictionary of dates to quantiles, in which case we
return that quantile for that year or date.

	
derive_relationship(variable_follower, variable_leaders, quantile=0.5, nwindows=11, decay_length_factor=1, use_ratio=False)

	Derive the relationship between two variables from the database.

	Parameters

	
	variable_follower (str [https://docs.python.org/3/library/stdtypes.html#str]) – The variable for which we want to calculate timeseries (e.g.
"Emissions|CH4").

	variable_leaders (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The variable(s) we want to use in order to infer timeseries of
variable_follower (e.g. ["Emissions|CO2"]).

	quantile (float [https://docs.python.org/3/library/functions.html#float]) – The quantile to return in each window.

	nwindows (int [https://docs.python.org/3/library/functions.html#int]) – The number of window centers to use when calculating the relationship
between the follower and lead gases.

	decay_length_factor (float [https://docs.python.org/3/library/functions.html#float]) – Parameter which controls how strongly points away from the window’s centre
should be weighted compared to points at the centre. Larger values give
points further away increasingly less weight, smaller values give points
further away increasingly more weight.

	use_ratio (bool [https://docs.python.org/3/library/functions.html#bool]) – If false, we use the quantile value of the weighted mean absolute value. If
true, we find the quantile weighted mean ratio between lead and follow,
then multiply the ratio by the input value.

	Returns

	Function which takes a pyam.IamDataFrame [https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame] containing
variable_leaders timeseries and returns timeseries for
variable_follower based on the derived relationship between the two.
Please see the source code for the exact definition (and docstring) of the
returned function.

	Return type

	func

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – There is no data for variable_leaders or variable_follower in the
 database.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – quantile is not between 0 and 1.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – nwindows is not equivalent to an integer or is not greater than 1.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – decay_length_factor is 0.

Time dependent quantile rolling windows cruncher API

Module for the database cruncher which uses the ‘rolling windows’ technique with
different quantiles in different years.

	
class silicone.database_crunchers.time_dep_quantile_rolling_windows.TimeDepQuantileRollingWindows(db)

	Bases: _DatabaseCruncher

Database cruncher which uses QuantileRollingWindows with different quantiles in
every year/datetime.

	
derive_relationship(variable_follower, variable_leaders, time_quantile_dict, **kwargs)

	Derive the relationship between two variables from the database.

For details of most parameters, see QuantileRollingWindows. The one different
parameter is time_quantile_dict, described below:

	Parameters

	
	variable_follower (str [https://docs.python.org/3/library/stdtypes.html#str]) – The variable for which we want to calculate timeseries (e.g.
"Emissions|CH4").

	variable_leaders (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The variable(s) we want to use in order to infer timeseries of
variable_follower (e.g. ["Emissions|CO2"]).

	time_quantile_dict (dict{datetime or int: float}) – Every year or datetime in the infillee database must be specified as a key.
The value is the quantile to use in that year. Note that the impact of the
quantile value is strongly dependent on the arguments passed to
QuantileRollingWindows.

	**kwargs – Passed to QuantileRollingWindows.

	Returns

	Function which takes a pyam.IamDataFrame [https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame] containing
variable_leaders timeseries and returns timeseries for
variable_follower based on the derived relationship between the two.
Please see the source code for the exact definition (and docstring) of the
returned function.

	Return type

	func

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Not all times in time_quantile_dict have data in the database.

Time dependent ratio cruncher API

Module for the database cruncher which uses the ‘time-dependent ratio’ technique.

	
class silicone.database_crunchers.time_dep_ratio.TimeDepRatio(db)

	Bases: _DatabaseCruncher

Database cruncher which uses the ‘time-dependent ratio’ technique.

This cruncher derives the relationship between two variables by simply assuming
that the follower timeseries is equal to the lead timeseries multiplied by a
time-dependent scaling factor. The scaling factor is the ratio of the
follower variable to the lead variable. If the database contains many such pairs,
the scaling factor is the ratio between the means of the values. By default, the
calculation will include only values where the lead variable takes the same sign
(+ or -) in the infilling database as in the case infilled. This prevents getting
negative values of emissions that cannot be negative. To allow cases where we
have no data of the correct sign, set same_sign = False in derive_relationship.

Once the relationship is derived, the ‘filler’ function will infill following:

\[E_f(t) = R(t) * E_l(t)\]

where \(E_f(t)\) is emissions of the follower variable and \(E_l(t)\) is
emissions of the lead variable.

\(R(t)\) is the scaling factor, calculated as the ratio of the means of the
the follower and the leader in the infiller database, denoted with
lower case e. By default, we include only cases where sign(e_l(t)) is the same in
both databases). The cruncher will raise a warning if the lead data is ever
negative, which can create complications for the use of this cruncher.

\[R(t) = \frac{mean(e_f(t))}{mean(e_l(t))})\]

	
derive_relationship(variable_follower, variable_leaders, same_sign=True, only_consistent_cases=True)

	Derive the relationship between two variables from the database.

	Parameters

	
	variable_follower (str [https://docs.python.org/3/library/stdtypes.html#str]) – The variable for which we want to calculate timeseries (e.g.
"Emissions|C5F12").

	variable_leaders (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The variable we want to use in order to infer timeseries of
variable_follower (e.g. ["Emissions|CO2"]).

	same_sign (bool [https://docs.python.org/3/library/functions.html#bool]) – Do we want to only use data where the leader has the same sign in the
infiller and infillee data? If so, we have a potential error from
not having data of the correct sign, but have more confidence in the
sign of the follower data.

	only_consistent_cases (bool [https://docs.python.org/3/library/functions.html#bool]) – Do we want to only use model/scenario combinations where both lead and
follow have data at all times? This will reduce the risk of inconsistencies
or unevenness in the results, but will slightly decrease performance speed
if you know the data is consistent. Senario/model pairs where
data is only returned at certain times will be removed, as will any
scenarios not returning both lead and follow data.

	Returns

	Function which takes a pyam.IamDataFrame [https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame] containing
variable_leaders timeseries and returns timeseries for
variable_follower based on the derived relationship between the two.
Please see the source code for the exact definition (and docstring) of the
returned function.

	Return type

	func

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – variable_leaders contains more than one variable.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – There is no data for variable_leaders or variable_follower in the
 database.

Multiple infillers API

Multiple infillers

Multiple infillers provide easy-to-use infiller options for the most common use-cases.

Decompose collection with time-dependent ratio API

Uses the ‘time-dependent ratio’ database cruncher designed for constructing an
aggregate variable and breaking this mix into its constituents.

	
class silicone.multiple_infillers.decompose_collection_with_time_dep_ratio.DecomposeCollectionTimeDepRatio(db)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Constructs an aggregate variable and uses the ‘time-dependent ratio’ technique to
calculate what this predicts for our database.

	
infill_components(aggregate, components, to_infill_df, metric_name='AR5GWP100', only_consistent_cases=True)

	Derive the relationship between the composite variables and their sum, then use
this to deconstruct the sum.

	Parameters

	
	aggregate (str [https://docs.python.org/3/library/stdtypes.html#str]) – The variable for which we want to calculate timeseries (e.g.
"Emissions|CO2"). Unlike in most crunchers, we do not expect the
database to already contain this data.

	components (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) –
	The variables whose sum should be equal to the timeseries of the aggregate
	(e.g. ["Emissions|CO2|AFOLU", "Emissions|CO2|Energy"]).

	to_infill_df (pyam.IamDataFrame [https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame]) – The dataframe that already contains the aggregate variable, but needs
the components to be infilled.

	metric_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the conversion metric to use. This will usually be
AR<4/5/6>GWP100.

	only_consistent_cases (bool [https://docs.python.org/3/library/functions.html#bool]) – Do we want to only use model/scenario combinations where all aggregate and
components have data at all times? This will reduce the risk of
inconsistencies or unevenness in the results, but may reduce the amount of
data.

	Returns

	The infilled data resulting from the calculation.

	Return type

	pyam.IamDataFrame [https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – There is no data for variable_leaders or variable_follower in the
 database.

Infill all required emissions for openscm API

	
silicone.multiple_infillers.infill_all_required_emissions_for_openscm.infill_all_required_variables(to_fill, database, variable_leaders, required_variables_list=None, cruncher=<class 'silicone.database_crunchers.quantile_rolling_windows.QuantileRollingWindows'>, output_timesteps=None, infilled_data_prefix=None, to_fill_old_prefix=None, check_data_returned=False, **kwargs)

	This is function designed to infill all required data given a minimal amount of
input.

	Parameters

	
	to_fill (pyam.IamDataFrame [https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame]) – The dataframe which is to be infilled

	database (pyam.IamDataFrame [https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame]) – The dataframe containing all information to be used in the infilling process.

	variable_leaders (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The name of the variable(s) found in to_fill which should be used to determine
the values of the other variables. For most infillers (including the default)
this list must contain only one entry. E.g. [“Emissions|CO2”]

	required_variables_list (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The list of variables to infill. Each will be done separately. The default
behaviour (None option) will result in this being filled with the complete list
of required emissions.

	cruncher – The class of cruncher to use to compute the infilled values. Defaults to
QuantileRollingWindows, which uses the median value of a rolling
window. See the cruncher documentation for more details.

	output_timesteps (list [https://docs.python.org/3/library/stdtypes.html#list][int [https://docs.python.org/3/library/functions.html#int] or datetime]) – List of times at which to return infilled values. Will interpolate values in
between known data, but will not extend beyond the range of data provided.

	infilled_data_prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string that should be prefixed on all the variable names of the results
returned. Used to distinguish returned values from those input.

	to_fill_old_prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – Any string already found at the beginning of the variables names of the input
to_fill dataframe. This will be removed before comparing the variable names
with database.

	check_data_returned (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, we perform checks that all desired data has been returned. Potential
reasons for failing this include requesting results at times outside our input
time range, as well as code bugs.

	kwargs (**) – An optional dictionary of keyword : arguments to be used with the cruncher.

	Returns

	The infilled dataframe (including input data) at requested times. All variables
now begin with infilled_data_prefix instead of to_fill_old_prefix.

	Return type

	pyam.IamDataFrame [https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame]

Infill composite values API

	
silicone.multiple_infillers.infill_composite_values.infill_composite_values(df, composite_dic=None)

	Constructs a series of aggregate variables, calculated as the sums of variables
that have been reported. If given factors terms too, the terms will be multiplied
by the factors before summing.

	Parameters

	
	df (pyam.IamDataFrame [https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame]) – Input data from which to construct consistent values. This is assumed to be
fully infilled. This will not be checked.

	composite_dic (dict{str: list[str [https://docs.python.org/3/library/stdtypes.html#str]]} or dict{str: dict{str: float}}) – Key: The variable names of the composite. Value: The variable names of the
constituents, which may include wildcards (‘*’). Optionally, these values may be
dictionaries of the names to factors, which we multiply the numbers by before
summing them. Defaults to a list of PFC, HFC, F-Gases, CO2 and Kyoto gases.

	Returns

	pyam.IamDataFrame [https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame] containing the composite values.

	Return type

	pyam.IamDataFrame [https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame]

Time projectors API

Time projectors

The classes in this module are used to infer values for a scenario at later times given
the trends before that time.

Extend latest time quantile

Module for the database cruncher which uses the ‘latest time quantile’ technique.

	
class silicone.time_projectors.extend_latest_time_quantile.ExtendLatestTimeQuantile(db)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Time projector which extends the timeseries of a variable by assuming that it
remains that a fixed quantile in the infiller database, the quantile it is in at the
last available time. This is the natural counterpart to the equal quantile walk
extending a single variable over time rather than over different emissions.

It assumes that the target timeseries is shorter than the infiller timeseries.

	
derive_relationship(variable, smoothing=None, weighting=None)

	Derives the quantiles of the variable in the infiller database. Note that this
takes only one variable as an argument, whereas most crunchers take two.

	Parameters

	
	variable (str [https://docs.python.org/3/library/stdtypes.html#str]) – The variable for which we want to calculate timeseries (e.g.
"Emissions|CO2").

	smoothing (float [https://docs.python.org/3/library/functions.html#float] or string) – By default, no smoothing is done on the distribution. If a value is
provided, it is fed into scipy.stats.gaussian_kde() - see full
documentation there. In short, if a float is input, we fit a Gaussian kernel
density estimator with that width to the points. If a string is used, it
must be either “scott” or “silverman”, after those two methods of
determining the best kernel bandwidth.

	weighting (None or dict{(str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]): float}) – The dictionary, mapping the (model and scenario) tuple onto the weight (
relative to a weight of 1 for the default). This does not have to include
all scenarios in df, but cannot include scenarios not in df.

	Returns

	Function which takes a pyam.IamDataFrame [https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame] containing
variable timeseries and returns these timeseries extended until the
latest time in the infiller database.

	Return type

	func

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – There is no data for variable in the database.

Extend RMS closest

Module for the database cruncher that uses the rms closest extension method

	
class silicone.time_projectors.extend_rms_closest.ExtendRMSClosest(db)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Time projector which extends the timeseries of a variable with
future timesteps infilled using the values from the ‘closest’
pathway in the infilling database.

We define the closest pathway as the pathway with the smallest
time-averaged (over the reported time steps) root mean squared
difference

	
derive_relationship(variable)

	Derives the values for the model/scenario combination in the database
with the least RMS error.

	Parameters

	variable (str [https://docs.python.org/3/library/stdtypes.html#str]) – The variable for which we want to calculate the timeseries (e.g.
Emissions|CO2).

	Returns

	Filled in data (without original source data)

	Return type

	obj: pyam.IamDataFrame

Linear extender

Module for the database cruncher which extends using a linear trend

	
class silicone.time_projectors.linear_extender.LinearExtender(db=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Time projector which extends the timeseries of a variable using a linear trend. You
can either specify a gradient for the line (possibly zero) or a point in the future.

	
derive_relationship(variable, gradient=None, year_value=None, times=None)

	Derives the function to return a linear trend following from the last datapoint

	Parameters

	
	variable (str [https://docs.python.org/3/library/stdtypes.html#str]) – The variable for which we want to calculate timeseries (e.g.
"Emissions|CO2").

	gradient (float [https://docs.python.org/3/library/functions.html#float] or None) – The gradient of the variable after its last available datapoint, in the
emissions units per year. If not provided, year_value must be provided
instead.

	year_value (None or tuple [https://docs.python.org/3/library/stdtypes.html#tuple](int [https://docs.python.org/3/library/functions.html#int] or datetime, float [https://docs.python.org/3/library/functions.html#float])) – The value of the variable at a given future time, e.g. (2050, 0) to extend
the data to net zero in 2050. If not provided, gradient must be provided
instead.

	times (None or list [https://docs.python.org/3/library/stdtypes.html#list][int [https://docs.python.org/3/library/functions.html#int] or datetime]) – The times to return entries at. Only required if no database was used during
initalisation.

	Returns

	Function which takes a pyam.IamDataFrame [https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame] containing
variable timeseries and returns these timeseries extended until the
latest time in the infiller database.

	Return type

	func

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – There is no data for variable in the database.

Stats API

Silicone’s custom statistical operations.

	
silicone.stats.calc_all_emissions_correlations(emms_df, years, output_dir)

	Save csv files of the correlation coefficients and the rank correlation
coefficients between emissions at specified times.

This function includes all undivided emissions (i.e. results recorded as
Emissions|X) and CO2 emissions split once (i.e. Emissions|CO2|X). It does not
include Kyoto gases. It will also save the average absolute value of the
coefficients.

	Parameters

	
	emms_df (pyam.IamDataFrame [https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame]) – The database to search for correlations between named values

	output_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The folder location to save the files.

	years (list [https://docs.python.org/3/library/stdtypes.html#list][int [https://docs.python.org/3/library/functions.html#int]]) – The years upon which to calculate correlations.

	created (Files) –

	------------- –

	"variable_counts.csv" (the number of scenario/model pairs where the emissions) –

	occurs. (data) –

	"gases_correlation_{year}.csv" (The Pearson's correlation between gases emissions) – in a given year.

	"gases_rank_correlation_{year}.csv" (The Spearman's rank correlation between) –

	year (gases in a given) –

	"time_av_absolute_correlation_{}_to_{}.csv" (The magnitude of the Pearson's) –

	emissions (correlation between) –

	requested. (averaged over the years) –

	"time_av_absolute_rank_correlation_{}_to_{}.csv" (The magnitude of the Spearman's) – rank correlation between emissions, averaged over the years requested.

	"time_variance_rank_correlation_{}_to_{}.csv" (The variance over time in the rank) – correlation values above.

	
silicone.stats.calc_quantiles_of_data(distribution, points_to_quant, smoothing=None, weighting=None, to_quantile=True)

	Calculates the quantiles of points_to_quant in the distribution of values described
by distribution. Optionally treats points_to_quant as quantiles and returns the
values that would lead to them instead.

	Parameters

	
	distribution (pd.Series) – The distribution of values.

	points_to_quant (pd.Series) – The points which we want find: if to_quantile is True (default) these are the
values which we will compare to the distribution, if False, these are the
quantiles which we want to find.

	smoothing (float [https://docs.python.org/3/library/functions.html#float] or string) – By default, no smoothing is done on the distribution. If a value is
provided, it is fed into scipy.stats.gaussian_kde() - see full
documentation there. In short, if a float is input, we fit a Gaussian kernel
density estimator with that width to the points. If a string is used, it
must be either “scott” or “silverman”, after those two methods of
determining the best kernel bandwidth.

	weighting (None or Series) – If a series, must have the same indices as distribution, giving the
relative weights of each point.

	to_quantile (Bool) – If True, we return the quantiles of the data in points_to_quant. If False, we
instead treat points_to_quant as the quantiles themselves (they must all be 0-1)
and return the values in distribution that occur at these quantiles.

	Returns

	An array with one row and a column for each entry in points_to_quant, containing the
quantiles of these points in order. Or, if to_quantile is False, containing the
values corresponding to the quantiles points_to_quant.

	Return type

	np.ndarray

	
silicone.stats.rolling_window_find_quantiles(xs, ys, quantiles, nwindows=11, decay_length_factor=1)

	Perform quantile analysis in the y-direction for x-weighted data.

Divides the x-axis into nwindows of equal length and weights data by how close they
are to the center of these windows. Then returns the quantiles of this weighted
data. Quantiles are defined so that the values returned are always equal to a y-
value in the data - there is no interpolation. Extremal points are given their full
weighting, meaning this will not agree with the np.quantiles under uniform weighting
(which effectively gives 0 weight to min and max values).

The weighting of a point at \(x\) for a window centered at \(x_0\) is:

\[w = \frac{1}{1 + \left (\frac{x - x_0}{l_{window}} \times f_{dl} \right)^2}\]

for \(l_{window}\) the window width (range of values divided by nwindows -1) and
\(f_{dl}\) the decay_length_factor.

	Parameters

	
	xs (np.ndarray, pd.Series) – The x co-ordinates to use in the regression.

	ys (np.ndarray, pd.Series) – The y co-ordinates to use in the regression.

	quantiles (list-like) – The quantiles to calculate in each window

	nwindows (int [https://docs.python.org/3/library/functions.html#int]) – How many points to evaluate between x_max and x_min. Must be > 1.

	decay_length_factor (float [https://docs.python.org/3/library/functions.html#float]) – gives the distance over which the weighting of the values falls to 1/4,
relative to half the distance between window centres. Defaults to 1.

	Returns

	Quantile values at the window centres.

	Return type

	pd.DataFrame

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – xs and ys don’t have the same shape

Utils API

	
silicone.utils.convert_units_to_MtCO2_equiv(df, metric_name='AR5GWP100')

	Converts the units of gases reported in kt into Mt CO2 equivalent per year

Uses GWP100 values from either (by default) AR5 or AR4 IPCC reports.

	Parameters

	
	df (pyam.IamDataFrame [https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame]) – The input dataframe whose units need to be converted.

	metric_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the conversion metric to use. This will usually be AR<4/5/6>GWP100.

	Returns

	The input data with units converted.

	Return type

	pyam.IamDataFrame [https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame]

	
silicone.utils.download_or_load_sr15(filename, valid_model_ids='*')

	Load SR1.5 data, if it isn’t there, download it

	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filename in which to look for/save the data

	valid_model_ids (str [https://docs.python.org/3/library/stdtypes.html#str]) – Models to return from data

	Returns

	The loaded data

	Return type

	obj: pyam.IamDataFrame

	
silicone.utils.find_matching_scenarios(options_df, to_compare_df, variable_follower, variable_leaders, classify_scenarios, classify_models=['*'], return_all_info=False, use_change_not_abs=False)

	Groups scenarios and models into different classifications and uses those to
work out which group contains a trendline most similar to the data. These
combinations may group several models/scenarios together by means of wild cards.
Most similar means having the smallest total squared distance between the
to_compare_df value of variable_follower and the variable_follower values
interpolated in options_df at the variable_leaders points in to_compare_df, i.e.
assuming errors only exist in variable_follower.
In the event of a tie between different scenario/model classifications, it returns the
scenario/model combination that occurs earlier in the input lists, looping through
scenarios first.

	Parameters

	
	options_df (pyam.IamDataFrame [https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame]) – The dataframe containing the data for each scenario and model

	to_compare_df (pyam.IamDataFrame [https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame]) – The dataframe we wish to find the scenario group closest to. May contain one
or more scenarios, we minimise the least squared errors for all the data
colleectively.

	variable_follower (str [https://docs.python.org/3/library/stdtypes.html#str]) – The variable we want to interpolate and compare to the value in to_compare_df

	variable_leaders (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The variable(s) we want to use to construct the interpolation
(e.g. ["Emissions|CO2"]). In the event that there are multiple, we
interpolate with each one separately and minimise the sum of the squared
errors.

	classify_scenarios (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The names of scenarios or groups of scenarios that are possible matches.
This may have “*”s to represent wild cards, hence multiple scenarios will have
all their data combined to make the interpolator.

	classify_models (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The names of models or groups of models that are possible matches.
This may have “*”s to represent wild cards, hence multiple models will have
all their data combined to make the interpolator.

	return_all_info (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, instead of simply returning the strings specifying the closest
scenario/model match, we return all scenario/model combinations in order of
preference, along with the rms distance, quantifying the closeness.

	use_change_not_abs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the code looks for the trend with the closest derivatives rather
than the closest absolute value, i.e. closest trend allowing for an offset.
This requires data from more than one time.

	Returns

	
	if return_all_info == False

	(string, string) – Strings specifying the model (first) and scenario (second) classifications
that best match the data.

	if return_all_info == True

	dict – Maps the model and scenario classification strings to the measure of
closeness.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Not all required timepoints are present in the database we crunched, we have
 {dates we have} but you passed in {dates we need}.”

	
silicone.utils.get_sr15_scenarios(output_file, valid_model_ids)

	Collects world-level data from the IIASA database for the named models and saves
them to a given location.

	Parameters

	
	output_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – File name and location for data to be saved

	valid_model_ids (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Names of models that are to be fetched.

	
silicone.utils.return_cases_which_consistently_split(df, aggregate, components, how_close=None, metric_name='AR5GWP100')

	Returns model-scenario tuples which correctly split up the to_split into the various
components. Components may contain wildcard “*”s to match several variables.

	Parameters

	
	df (pyam.IamDataFrame [https://pyam-iamc.readthedocs.io/en/latest/api/iamdataframe.html#pyam.IamDataFrame]) – The input dataframe.

	aggregate (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the variable that should split into the others

	components (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – List of the variable names whose sum should equal the to_split value (if
expressed in common units).

	how_close (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – This is a dictionary of numpy.isclose options specifying how exact the match
must be for the case to be included as passing. By default we specify a relative
tolerance of 1% (‘rtol’: 1e-2). The syntax for this can be found in the numpy
documentation.

	metric_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the conversion metric to use. This will usually be AR<4/5/6>GWP100.

	Returns

	List of consistent (Model name, scenario name, region name) tuples.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][(str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str])]

Changelog

[v1.3.0] - 14 Oct 2022

Added

	(#146 [https://github.com/GranthamImperial/silicone/pull/146]) Added the ability to do non-linear interpolation by introducing Interpolation.

Changed

	(#149 [https://github.com/GranthamImperial/silicone/pull/149]) Checked consistency of time extender database before extending at constant quantiles.

	(#142 [https://github.com/GranthamImperial/silicone/pull/142]) Sped up RMS closest

	(#146 [https://github.com/GranthamImperial/silicone/pull/146]) Deprecated the linear interpolator LinearInterpolation in favour of a generic interpolator Interpolation.

	(#150 [https://github.com/GranthamImperial/silicone/pull/150]) Added more info when returning an error message in multiple infillers.

Fixed

	(#149 [https://github.com/GranthamImperial/silicone/pull/149]) Ensured RMS closest works with the latest version of pyam. Bugfix for a warning in infill_composite_values

	(#144 [https://github.com/GranthamImperial/silicone/pull/144]) RMS closest no longer causes pd.core.common.SettingWithCopyWarning to be raised

	(#147 [https://github.com/GranthamImperial/silicone/pull/147]) Filter prevents including data from the wrong regions in DecomposeCollectionTimeDepRatio. Notebook fixed to run with updates in python 3.8.

[v1.2.0] - 28 Sept 2021

Added

	(#139 [https://github.com/GranthamImperial/silicone/pull/139]) Support for pyam-iamc>1.0

	(#135 [https://github.com/GranthamImperial/silicone/pull/135]) Added html documentation of the time projectors

Changed

	(#138 [https://github.com/GranthamImperial/silicone/pull/138]) Remove Python3.6 support

	(#138 [https://github.com/GranthamImperial/silicone/pull/138]) Improved speed of silicone.multiple_infillers.infill_all_required_emissions_for_openscm() by removing multiple loops (note that API did not change)

[v1.1.0] - 12 July 2021

Added

	(#134 [https://github.com/GranthamImperial/silicone/pull/134]) Added Gaurav to author list.

	(#132 [https://github.com/GranthamImperial/silicone/pull/132]) Added an additional time projector (Linear Extender) that simply extends the latest data to reach a specified point or by a constant gradient.

	(#129 [https://github.com/GranthamImperial/silicone/pull/129]) Added an additional time projector (Extend RMS closest) that extends a pathway to cover later times by selecting future data from the closest pathway.

	(#126 [https://github.com/GranthamImperial/silicone/pull/126]) Added the first time projector (Extend latest time quantile) that extends a pathway to cover later times, assuming it remains at the same quantile.

Changed

	(#133 [https://github.com/GranthamImperial/silicone/pull/133]) More fixes to allow compatibility with pyam updates.

	(#131 [https://github.com/GranthamImperial/silicone/pull/131]) Updated to allow compatibility with latest versions of pyam, openscm-units, coverage, pytest and black

Fixed

	(#130 [https://github.com/GranthamImperial/silicone/pull/130]) Reformatted files to make the linter happy (no functional changes).

[v1.0.3]

Changed

	(#124 [https://github.com/GranthamImperial/silicone/pull/124]) Neatened up the changelog

[v1.0.2] - 4 Jan 2021

Changed

	(#121 [https://github.com/GranthamImperial/silicone/pull/121]) Updated to openscm-units>0.2

Fixed

	(#123 [https://github.com/GranthamImperial/silicone/pull/123]) Made the installation runner avoid prerelease.

[v1.0.1] - 27 Oct 2020

Added

	(#115 [https://github.com/GranthamImperial/silicone/pull/115]) Enabled multiple lead gases to be used with RMS closest cruncher.

Changed

	(#119 [https://github.com/GranthamImperial/silicone/pull/119]) Updated to work with pyam v0.8

[v1.0.0] - 9 Sept 2020

Initial release

	(#116 [https://github.com/GranthamImperial/silicone/pull/116]) Pinned black

	(#113 [https://github.com/GranthamImperial/silicone/pull/113]) Added a warning for using ratio-based crunchers with negative values. Fixed some unit conversion todos (not user-facing).

	(#112 [https://github.com/GranthamImperial/silicone/pull/112]) Enabled more general unit conversion, bug fix and improvement for infill_composite_values.

	(#111 [https://github.com/GranthamImperial/silicone/pull/111]) Minor improvements to error messages and documentation.

	(#110 [https://github.com/GranthamImperial/silicone/pull/110]) Gave an option to time_dep_ratio and decompose_collection to ignore model/scenario combinations missing values at some required times.

	(#108 [https://github.com/GranthamImperial/silicone/pull/108]) Added a multiple infiller to split up an aggregate with a remainder. Disabled test for downloading database.

	(#103 [https://github.com/GranthamImperial/silicone/pull/103]) Update github address to GranthamImperial.

	(#101 [https://github.com/GranthamImperial/silicone/pull/101]) Update release docs

	(#93 [https://github.com/GranthamImperial/silicone/pull/93]) Add regular test of install from PyPI

	(#102 [https://github.com/GranthamImperial/silicone/pull/102]) Minor bugfix for nan handling in Equal Quantile Walk.

	(#100 [https://github.com/GranthamImperial/silicone/pull/100]) Added funding info to readme and removed unnecessary files.

	(#97 [https://github.com/GranthamImperial/silicone/pull/97]) Added sections to documentation file so that newer crunchers and multiple infillers are included.

	(#95 [https://github.com/GranthamImperial/silicone/pull/95]) Added sections to notebooks covering all the recent changes.

	(#94 [https://github.com/GranthamImperial/silicone/pull/94]) Added EqualQuantileWalk, a cruncher which finds the quantile of the lead variable in the infiller database and returns the same quantile of the follow variable.

	(#87 [https://github.com/GranthamImperial/silicone/pull/87]) Added TimeDepQuantileRollingWindows, a cruncher which allows the user to crunch different quantiles in different years.

	(#86 [https://github.com/GranthamImperial/silicone/pull/86]) Slightly changed the definition of quantile rolling windows to make it symmetric (not rounding down).

	(#83 [https://github.com/GranthamImperial/silicone/pull/83]) Added tests for appending results of crunching to the input.

	(#82 [https://github.com/GranthamImperial/silicone/pull/82]) Updated to a later version of pyam and solved todos associated with this. Also added a kwargs argument to infill_all_required.

	(#80 [https://github.com/GranthamImperial/silicone/pull/80]) Changed the names of crunchers for brevity. Also changed lead_gas to latest_time_ratio and included it in ratio notebook.

	(#78 [https://github.com/GranthamImperial/silicone/pull/78]) Changed how quantile rolling windows works by adding an extra interpolate step for smoothness

	(#77 [https://github.com/GranthamImperial/silicone/pull/77]) Added calculation of variance of rank correlation to stats

	(#76 [https://github.com/GranthamImperial/silicone/pull/76]) Removed command-line interface

	(#75 [https://github.com/GranthamImperial/silicone/pull/75]) Updated README

	(#72 [https://github.com/GranthamImperial/silicone/pull/72]) Altered infill_composite_value to allow multiplication by a factor before summing. Removed unnecessary notebooks.

	(#69 [https://github.com/GranthamImperial/silicone/pull/69]) Fixed bug so that DatabaseCruncherRMSClosest no longer selects scenarios which don’t have follower data

	(#68 [https://github.com/GranthamImperial/silicone/pull/68]) More investigatory tools and scripts for calculating and outputting emissions correlations.

	(#67 [https://github.com/GranthamImperial/silicone/pull/67]) Introduce investigatory tools for plotting relations between emissions.

	(#66 [https://github.com/GranthamImperial/silicone/pull/66]) Remove Input folder in favour of using openscm-units

	(#65 [https://github.com/GranthamImperial/silicone/pull/65]) Add format-notebooks target to the Makefile

	(#64 [https://github.com/GranthamImperial/silicone/pull/64]) Add basic linters to CI

	(#61 [https://github.com/GranthamImperial/silicone/pull/61]) Switch to using GitHub actions for CI

	(#60 [https://github.com/GranthamImperial/silicone/pull/60]) Update installation docs to reference pip and conda

	(#62 [https://github.com/GranthamImperial/silicone/pull/62]) Minor changes to remove warning messages and remove some todos.

	(#52 [https://github.com/GranthamImperial/silicone/pull/52]) Made the Lead Gas infiller use the average latest data rather than being restricted to a single value. Updated infill_composite_values to work with the latest data.

	(#51 [https://github.com/GranthamImperial/silicone/pull/51]) Split the notebooks into chapters with minor changes to the text. Moved a script function into utilities to download data.

	(#49 [https://github.com/GranthamImperial/silicone/pull/49]) Rewrote the documentation and notebooks to update, split up information and clarify.

	(#48 [https://github.com/GranthamImperial/silicone/pull/48]) Introduced multiple_infiller function to calculate the composite values from the constituents.

	(#47 [https://github.com/GranthamImperial/silicone/pull/47]) Made an option for quantile_rolling_windows to infill using the ratio of lead to follow data.

	(#46 [https://github.com/GranthamImperial/silicone/pull/46]) Made the time-dependent ratio infiller only use data where the leader has the same sign.

	(#45 [https://github.com/GranthamImperial/silicone/pull/45]) Made infill_all_required_emissions_for_openscm, the second multiple-infiller function.

	(#44 [https://github.com/GranthamImperial/silicone/pull/44]) Made decompose_collection_with_time_dep_ratio, the first multiple-infiller function.

	(#43 [https://github.com/GranthamImperial/silicone/pull/43]) Implemented new util functions for downloading data, unit conversion and data checking.

	(#41 [https://github.com/GranthamImperial/silicone/pull/41]) Added a cruncher to interpolate values between data from specific scenarios. Only test notebooks with lax option.

	(#32 [https://github.com/GranthamImperial/silicone/pull/32]) Raise ValueError when asking to infill a case with no data

	(#27 [https://github.com/GranthamImperial/silicone/pull/27]) Developed the constant ratio cruncher

	(#21 [https://github.com/GranthamImperial/silicone/pull/21]) Developed the time-dependent ratio cruncher

	(#20 [https://github.com/GranthamImperial/silicone/pull/20]) Clean up the quantiles cruncher and test rigorously

	(#19 [https://github.com/GranthamImperial/silicone/pull/19]) Add releasing docs plus command-line entry point tests

	(#14 [https://github.com/GranthamImperial/silicone/pull/14]) Add root-mean square closest pathway cruncher

	(#13 [https://github.com/GranthamImperial/silicone/pull/13]) Get initial work (see #11 [https://github.com/GranthamImperial/silicone/pull/11]) into package structure, still requires tests (see #16 [https://github.com/GranthamImperial/silicone/pull/16])

	(#12 [https://github.com/GranthamImperial/silicone/pull/12]) Add BSD-3-Clause license

	(#9 [https://github.com/GranthamImperial/silicone/pull/9]) Add lead gas cruncher

	(#6 [https://github.com/GranthamImperial/silicone/pull/6]) Update development docs

	(#5 [https://github.com/GranthamImperial/silicone/pull/5]) Put notebooks under CI

	(#4 [https://github.com/GranthamImperial/silicone/pull/4]) Add basic documentation structure

	(#1 [https://github.com/GranthamImperial/silicone/pull/1]) Added pull request and issues templates

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 silicone	

 	
 	
 silicone.database_crunchers	

 	
 	
 silicone.database_crunchers.constant_ratio	

 	
 	
 silicone.database_crunchers.equal_quantile_walk	

 	
 	
 silicone.database_crunchers.interpolate_specified_scenarios_and_models	

 	
 	
 silicone.database_crunchers.latest_time_ratio	

 	
 	
 silicone.database_crunchers.linear_interpolation	

 	
 	
 silicone.database_crunchers.quantile_rolling_windows	

 	
 	
 silicone.database_crunchers.rms_closest	

 	
 	
 silicone.database_crunchers.time_dep_quantile_rolling_windows	

 	
 	
 silicone.database_crunchers.time_dep_ratio	

 	
 	
 silicone.multiple_infillers	

 	
 	
 silicone.multiple_infillers.decompose_collection_with_time_dep_ratio	

 	
 	
 silicone.multiple_infillers.infill_all_required_emissions_for_openscm	

 	
 	
 silicone.multiple_infillers.infill_composite_values	

 	
 	
 silicone.stats	

 	
 	
 silicone.time_projectors	

 	
 	
 silicone.time_projectors.extend_latest_time_quantile	

 	
 	
 silicone.time_projectors.extend_rms_closest	

 	
 	
 silicone.time_projectors.linear_extender	

 	
 	
 silicone.utils	

Index

 C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | Q
 | R
 | S
 | T

C

 	
 	calc_all_emissions_correlations() (in module silicone.stats)

 	calc_quantiles_of_data() (in module silicone.stats)

 	
 	ConstantRatio (class in silicone.database_crunchers.constant_ratio)

 	convert_units_to_MtCO2_equiv() (in module silicone.utils)

D

 	
 	DecomposeCollectionTimeDepRatio (class in silicone.multiple_infillers.decompose_collection_with_time_dep_ratio)

 	derive_relationship() (silicone.database_crunchers.constant_ratio.ConstantRatio method)

 	(silicone.database_crunchers.equal_quantile_walk.EqualQuantileWalk method)

 	(silicone.database_crunchers.interpolate_specified_scenarios_and_models.ScenarioAndModelSpecificInterpolate method)

 	(silicone.database_crunchers.latest_time_ratio.LatestTimeRatio method)

 	(silicone.database_crunchers.linear_interpolation.LinearInterpolation method)

 	(silicone.database_crunchers.quantile_rolling_windows.QuantileRollingWindows method)

 	(silicone.database_crunchers.rms_closest.RMSClosest method)

 	(silicone.database_crunchers.time_dep_quantile_rolling_windows.TimeDepQuantileRollingWindows method)

 	(silicone.database_crunchers.time_dep_ratio.TimeDepRatio method)

 	(silicone.time_projectors.extend_latest_time_quantile.ExtendLatestTimeQuantile method)

 	(silicone.time_projectors.extend_rms_closest.ExtendRMSClosest method)

 	(silicone.time_projectors.linear_extender.LinearExtender method)

 	
 	download_or_load_sr15() (in module silicone.utils)

E

 	
 	EqualQuantileWalk (class in silicone.database_crunchers.equal_quantile_walk)

 	
 	ExtendLatestTimeQuantile (class in silicone.time_projectors.extend_latest_time_quantile)

 	ExtendRMSClosest (class in silicone.time_projectors.extend_rms_closest)

F

 	
 	find_matching_scenarios() (in module silicone.utils)

G

 	
 	get_sr15_scenarios() (in module silicone.utils)

I

 	
 	infill_all_required_variables() (in module silicone.multiple_infillers.infill_all_required_emissions_for_openscm)

 	
 	infill_components() (silicone.multiple_infillers.decompose_collection_with_time_dep_ratio.DecomposeCollectionTimeDepRatio method)

 	infill_composite_values() (in module silicone.multiple_infillers.infill_composite_values)

L

 	
 	LatestTimeRatio (class in silicone.database_crunchers.latest_time_ratio)

 	
 	LinearExtender (class in silicone.time_projectors.linear_extender)

 	LinearInterpolation (class in silicone.database_crunchers.linear_interpolation)

M

 	
 	
 module

 	silicone.database_crunchers

 	silicone.database_crunchers.constant_ratio

 	silicone.database_crunchers.equal_quantile_walk

 	silicone.database_crunchers.interpolate_specified_scenarios_and_models

 	silicone.database_crunchers.latest_time_ratio

 	silicone.database_crunchers.linear_interpolation

 	silicone.database_crunchers.quantile_rolling_windows

 	silicone.database_crunchers.rms_closest

 	silicone.database_crunchers.time_dep_quantile_rolling_windows

 	silicone.database_crunchers.time_dep_ratio

 	silicone.multiple_infillers

 	silicone.multiple_infillers.decompose_collection_with_time_dep_ratio

 	silicone.multiple_infillers.infill_all_required_emissions_for_openscm

 	silicone.multiple_infillers.infill_composite_values

 	silicone.stats

 	silicone.time_projectors

 	silicone.time_projectors.extend_latest_time_quantile

 	silicone.time_projectors.extend_rms_closest

 	silicone.time_projectors.linear_extender

 	silicone.utils

Q

 	
 	QuantileRollingWindows (class in silicone.database_crunchers.quantile_rolling_windows)

R

 	
 	return_cases_which_consistently_split() (in module silicone.utils)

 	
 	RMSClosest (class in silicone.database_crunchers.rms_closest)

 	rolling_window_find_quantiles() (in module silicone.stats)

S

 	
 	ScenarioAndModelSpecificInterpolate (class in silicone.database_crunchers.interpolate_specified_scenarios_and_models)

 	
 silicone.database_crunchers

 	module

 	
 silicone.database_crunchers.constant_ratio

 	module

 	
 silicone.database_crunchers.equal_quantile_walk

 	module

 	
 silicone.database_crunchers.interpolate_specified_scenarios_and_models

 	module

 	
 silicone.database_crunchers.latest_time_ratio

 	module

 	
 silicone.database_crunchers.linear_interpolation

 	module

 	
 silicone.database_crunchers.quantile_rolling_windows

 	module

 	
 silicone.database_crunchers.rms_closest

 	module

 	
 silicone.database_crunchers.time_dep_quantile_rolling_windows

 	module

 	
 silicone.database_crunchers.time_dep_ratio

 	module

 	
 	
 silicone.multiple_infillers

 	module

 	
 silicone.multiple_infillers.decompose_collection_with_time_dep_ratio

 	module

 	
 silicone.multiple_infillers.infill_all_required_emissions_for_openscm

 	module

 	
 silicone.multiple_infillers.infill_composite_values

 	module

 	
 silicone.stats

 	module

 	
 silicone.time_projectors

 	module

 	
 silicone.time_projectors.extend_latest_time_quantile

 	module

 	
 silicone.time_projectors.extend_rms_closest

 	module

 	
 silicone.time_projectors.linear_extender

 	module

 	
 silicone.utils

 	module

T

 	
 	TimeDepQuantileRollingWindows (class in silicone.database_crunchers.time_dep_quantile_rolling_windows)

 	
 	TimeDepRatio (class in silicone.database_crunchers.time_dep_ratio)

 nav.xhtml

 Table of Contents

 		
 Silicone

 		
 Installation

 		
 Usage

 		
 Development

 		
 Contributing

 		
 Getting setup

 		
 Getting help

 		
 Formatting

 		
 Buiding the docs

 		
 Gotchas

 		
 Docstring style

 		
 Releasing

 		
 First step

 		
 Hitting the button

 		
 Why is there a Makefile in a pure Python repository?

 		
 Database crunchers API

 		
 Closest RMS cruncher API

 		
 RMSClosest

 		
 Constant ratio cruncher API

 		
 ConstantRatio

 		
 Equal quantile walk cruncher API

 		
 EqualQuantileWalk

 		
 Interpolate specified scenarios and models cruncher API

 		
 ScenarioAndModelSpecificInterpolate

 		
 Latest Time Ratio API

 		
 LatestTimeRatio

 		
 Linear interpolation cruncher API

 		
 LinearInterpolation

 		
 Quantile rolling windows cruncher API

 		
 QuantileRollingWindows

 		
 Time dependent quantile rolling windows cruncher API

 		
 TimeDepQuantileRollingWindows

 		
 Time dependent ratio cruncher API

 		
 TimeDepRatio

 		
 Multiple infillers API

 		
 Decompose collection with time-dependent ratio API

 		
 DecomposeCollectionTimeDepRatio

 		
 Infill all required emissions for openscm API

 		
 infill_all_required_variables()

 		
 Infill composite values API

 		
 infill_composite_values()

 		
 Time projectors API

 		
 Extend latest time quantile

 		
 ExtendLatestTimeQuantile

 		
 Extend RMS closest

 		
 ExtendRMSClosest

 		
 Linear extender

 		
 LinearExtender

 		
 Stats API

 		
 calc_all_emissions_correlations()

 		
 calc_quantiles_of_data()

 		
 rolling_window_find_quantiles()

 		
 Utils API

 		
 convert_units_to_MtCO2_equiv()

 		
 download_or_load_sr15()

 		
 find_matching_scenarios()

 		
 get_sr15_scenarios()

 		
 return_cases_which_consistently_split()

 		
 Changelog

 		
 [v1.3.0] - 14 Oct 2022

 		
 Added

 		
 Changed

 		
 Fixed

 		
 [v1.2.0] - 28 Sept 2021

 		
 Added

 		
 Changed

 		
 [v1.1.0] - 12 July 2021

 		
 Added

 		
 Changed

 		
 Fixed

 		
 [v1.0.3]

 		
 Changed

 		
 [v1.0.2] - 4 Jan 2021

 		
 Changed

 		
 Fixed

 		
 [v1.0.1] - 27 Oct 2020

 		
 Added

 		
 Changed

 		
 [v1.0.0] - 9 Sept 2020

 		
 Initial release

_static/plus.png

_static/file.png

_static/minus.png

